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Let B„ denote the collection of all binary relations on the set X = { 1, 2, 
. . . , n}. The purpose of this paper is to observe that there exists a pair of rela
tions on X that generate all of Bn under the boolean operations and relational 
composition. 

In [1] C. J. Everett and S. M. Ulam introduced the notion of an abstract 
projective algebra. McKinsey [2] showed that every projective algebra is iso
morphic to a subalgebra of a complete atomic projective algebra and thus, in 
view of the representation given in [1], every projective algebra is isomorphic to 
a projective algebra of subsets of a direct product; that is, to an algebra of rela
tions. 

PROJECTIVE ALGEBRA. A boolean algebra Pwith unit 1 and zero 0, so 
that for all x £ P, 0 < x < 1, is said to be a projective algebra if there are de
fined two mappings n1 and n2 of Pinto Psatisfying the following: 

P j . ir£a V b) = up V up. 
P2 . TTj^l = p0 = TT2TT1 1 where p0 is an atom of P. 
P3 . lift = 0 if and only if a = 0. 
P 4 . TT.TT.a = 7T.Û. 

P5 . For 0 < a < 7 r 1 l , 0 < Z > < 7T21, there exists an element a o b such 
that nx(a a b) — a, 7i2(a a b) = b, with the property that x E P , itxx = a, TT2X = 
b implies x < a a b. 

p6- V °Po = 7 r i 1 ' P o D 7 r 2 1 = 7 r 2 L 

P7 . 0 < x, ^ < ir11 implies (x V y) D TT2 1 = (x a 7r21) V (y a TT2 1); and 
0 < u, v < TT2 1 implies 7rx 1 • (u V u) = (rr31 • w) V (7^ 1 • u). 

If the projective algebra Pis a complete atomic boolean algebra, then Pis 
called a complete atomic projective algebra. The projective algebra Pis said to be 
projectively generated by a subset A if Pcan be obtained from A using nl9 n2, 

• and the boolean operations. 
Consider Bn and let p 0 = (1, 1). We define the mappings TTJ, TT2: Bn ~> 

B„ and a product • : Bn x Bn —» B„ as follows: 
(i) 7rxa = a((X x JOP0)> 

(ii) TT2a = ( p 0 ( X x X ) ) a , 

(iii) a • 0 = (a(X x X))0, 

^ M 5 (MOS) subject classifications (1970). Primary 02J10. 
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where juxtaposition denotes the composition of relations. 
It is easy to verify axioms Pj — P7 to establish that Bn with the atom p0 

and the mappings 7rx, n2 and • as defined is a projective algebra. 

The verification above, as well as the calculations below are made easier by 
noting the following equivalent forms of (i), (ii) and (iii): 

(i) nta = domain (a) x { 1}; 

(ii) rr2a = { 1} x range (a); 
(iii) a a fi = domain(a) x range(/3). 

THEOREM 1. The projective algebra Bn can be protectively generated by a 

pair of disjoint elements. 

PROOF. We observe first that if we generate the atoms (1, k) and (k, 1), 1 
< fc < A, then all others are obtained by taking the a-product of suitable pairs of 
these. 

Let a0 = {(x,y)\x <y} and j30 = {(*, y)\y <x}. Now p0 = (1, 1) = 

fl^Mo- I f w e l e t ai = ao ~ (Po ° 7T2ao) a n d h = ^o " Oi^o D Po)> w e ê e t 

(TT^J - TTjjîj) = (2, 1) and (-n2&\ ~~ 7 r2ai) = 0> 2). Using the recursions a fc+1 

= ak - {(k + 1, 1) a ir2a*) and 0 f c+1 = 0fc - ( i r ^ a (1, k + 1)), noting that 
ak = {(x, y)\k <x <y} and t$k = {(x, y)\k <y <x}9 we see that O r ^ -
ÏÏJ^) = (k + 1, 1) and ( T T ^ - T T ^ ) = (1, k + 1), for all 0 < k < n - 2. Also 

^ 1 ^ - 2 = (n> *) a n d lï2an-2 ~ 0> w)» s o t n a t w e n a v e generated all of the atoms 
mentioned above. 

THEOREM 2. The algebra of relations Bn can be generated, with respect to 

the boolean operations and composition, by two relations. 

PROOF. Let â = a0 U {(1, 1)} and 0 = 0O U {(1, 1)}. Now â n ^ = 

{(1, 1)} = p 0 , â U |3 U ]3a= X x X, a0 = a - p 0 and 0O = 0 - p 0 . Since we 

defined the mappings 7r1? 7T2 and o in terms of the composition in B„, Theorem 

2 is an immediate consequence of Theorem 1. 
REMARK. It is well-known that Bn cannot be generated by a pair of ele

ments using only the boolean operations. Moreover one can show that the com
positional semigroup Bn cannot be generated by a pair of relations. 
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