GENERATORS FOR ALGEBRAS OF RELATIONS¹

BY A. R. BEDNAREK AND S. M. ULAM Communicated by J. T. Schwartz, May 11, 1976

Let \mathcal{B}_n denote the collection of all binary relations on the set $X = \{1, 2, \dots, n\}$. The purpose of this paper is to observe that there exists a *pair* of relations on X that *generate* all of \mathcal{B}_n under the boolean operations and relational composition.

In [1] C. J. Everett and S. M. Ulam introduced the notion of an abstract projective algebra. McKinsey [2] showed that every projective algebra is isomorphic to a subalgebra of a complete atomic projective algebra and thus, in view of the representation given in [1], every projective algebra is isomorphic to a projective algebra of subsets of a direct product; that is, to an algebra of relations.

PROJECTIVE ALGEBRA. A boolean algebra P with unit 1 and zero 0, so that for all $x \in P$, $0 \le x \le 1$, is said to be a projective algebra if there are defined two mappings π_1 and π_2 of P into P satisfying the following:

- $\mathbf{P}_1. \ \pi_i(a \lor b) = \pi_i a \lor \pi_i b.$
- P₂. $\pi_1 \pi_2 1 = p_0 = \pi_2 \pi_1 1$ where p_0 is an atom of *P*.
- P_3 . $\pi_i a = 0$ if and only if a = 0.
- $\mathbf{P}_4. \ \pi_i \pi_i a = \pi_i a.$

P₅. For $0 < a \le \pi_1 1$, $0 < b \le \pi_2 1$, there exists an element $a \square b$ such that $\pi_1(a \square b) = a$, $\pi_2(a \square b) = b$, with the property that $x \in P$, $\pi_1 x = a$, $\pi_2 x = b$ implies $x \le a \square b$.

 P_6 . $\pi_1 1 \Box p_0 = \pi_1 1; p_0 \Box \pi_2 1 = \pi_2 1.$

P₇. 0 < x, y ≤ π_1 1 implies (x ∨ y) □ π_2 1 = (x □ π_2 1) ∨ (y □ π_2 1); and 0 < u, v ≤ π_2 1 implies π_1 1 □ (u ∨ v) = (π_1 1 □ u) ∨ (π_1 1 □ v).

If the projective algebra P is a complete atomic boolean algebra, then P is called a *complete atomic projective algebra*. The projective algebra P is said to be *projectively generated* by a subset A if P can be obtained from A using π_1, π_2 , \Box and the boolean operations.

Consider \mathcal{B}_n and let $p_0 = (1, 1)$. We define the mappings $\pi_1, \pi_2: \mathcal{B}_n \longrightarrow \mathcal{B}_n$ and a product $\Box: \mathcal{B}_n \times \mathcal{B}_n \longrightarrow \mathcal{B}_n$ as follows:

(i)
$$\pi_1 \alpha = \alpha((X \times X)p_0),$$

- (ii) $\pi_2 \alpha = (p_0(X \times X))\alpha$,
- (iii) $\alpha \Box \beta = (\alpha(X \times X))\beta$,

AMS (MOS) subject classifications (1970). Primary 02J10.

¹Research supported by NSF Grant No. MSC75-21130.

Copyright © 1976, American Mathematical Society

where juxtaposition denotes the composition of relations.

It is easy to verify axioms P_1-P_7 to establish that \mathcal{B}_n with the atom p_0 and the mappings π_1, π_2 and \Box as defined is a projective algebra.

The verification above, as well as the calculations below are made easier by noting the following equivalent forms of (i), (ii) and (iii):

(i)
$$\pi_1 \alpha = \text{domain}(\alpha) \times \{1\}$$

- (ii) $\pi_2 \alpha = \{1\} \times \text{range } (\alpha);$
- (iii) $\alpha \Box \beta = \text{domain}(\alpha) \times \text{range}(\beta)$.

THEOREM 1. The projective algebra \mathcal{B}_n can be projectively generated by a pair of disjoint elements.

PROOF. We observe first that if we generate the atoms (1, k) and (k, 1), $1 \le k \le n$, then all others are obtained by taking the \square -product of suitable pairs of these.

Let $\alpha_0 = \{(x, y) | x < y\}$ and $\beta_0 = \{(x, y) | y < x\}$. Now $p_0 = (1, 1) = \pi_2 \pi_1 \beta_0$. If we let $\alpha_1 = \alpha_0 - (p_0 \Box \pi_2 \alpha_0)$ and $\beta_1 = \beta_0 - (\pi_1 \beta_0 \Box p_0)$, we get $(\pi_1 \alpha_1 - \pi_1 \beta_1) = (2, 1)$ and $(\pi_2 \beta_1 - \pi_2 \alpha_1) = (1, 2)$. Using the recursions $\alpha_{k+1} = \alpha_k - ((k+1, 1) \Box \pi_2 \alpha_k)$ and $\beta_{k+1} = \beta_k - (\pi_1 \beta_k \Box (1, k+1))$, noting that $\alpha_k = \{(x, y) | k < x < y\}$ and $\beta_k = \{(x, y) | k < y < x\}$, we see that $(\pi_1 \alpha_k - \pi_1 \beta_k) = (k+1, 1)$ and $(\pi_2 \beta_k - \pi_2 \alpha_k) = (1, k+1)$, for all $0 \le k \le n-2$. Also $\pi_1 \beta_{n-2} = (n, 1)$ and $\pi_2 \alpha_{n-2} = (1, n)$, so that we have generated all of the atoms mentioned above.

THEOREM 2. The algebra of relations \mathcal{B}_n can be generated, with respect to the boolean operations and composition, by two relations.

PROOF. Let $\overline{\alpha} = \alpha_0 \cup \{(1, 1)\}$ and $\overline{\beta} = \beta_0 \cup \{(1, 1)\}$. Now $\overline{\alpha} \cap \overline{\beta} = \{(1, 1)\} = p_0, \overline{\alpha} \cup \overline{\beta} \cup \overline{\beta\alpha} = X \times X, \alpha_0 = \overline{\alpha} - p_0$ and $\beta_0 = \overline{\beta} - p_0$. Since we defined the mappings π_1, π_2 and \Box in terms of the composition in \mathcal{B}_n , Theorem 2 is an immediate consequence of Theorem 1.

REMARK. It is well-known that \mathcal{B}_n cannot be generated by a pair of elements using only the boolean operations. Moreover one can show that the compositional semigroup \mathcal{B}_n cannot be generated by a pair of relations.

REFERENCES

1. C. J. Everett, Jr., and S. M. Ulam, Projective algebra. I, Amer. J. Math. 68 (1946), 77-88. MR 7, 409.

2. J. C. C. McKinsey, On the representation of projective algebras, Amer. J. Math. 70 (1948), 375-384. MR 10, 4.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302