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This is an exciting and important volume since it is the first comprehensive 
presentation of a theory of cosmology taking into account the discoveries of 
the past quarter century in particle physics, radio astronomy, and differential 
topology. The astronomical universe or cosmos is examined within the 
framework of general relativity and global differential geometry. The exposi­
tion is authoritative and painstaking, although in the search for logical 
completeness sometimes a bewildering tangle of alternatives and complexities 
is introduced (see, for instance, Chapter 6 on causal structure). The authors 
assume a basic knowledge of the physical aspects of general relativity theory, 
and write for the reader who is skilled in tensor calculus but who wishes to 
see the appropriate concepts defined in an intrinsic coordinate-free manner 
suitable for a global geometry. 

Concerning the central thesis of their treatise, the authors write in the 
preface: 

"The subject of this book is the structure of space-time on length scales 
from 10"13 cm, the radius of an elementary particle, up to 1028 cm, the radius 
of the universe. For reasons explained in Chapters 1 and 3, we base our 
treatment on Einstein's General Theory of Relativity. This theory leads to 
two remarkable predictions about the universe: first, that the final fate of 
massive stars is to collapse behind an event horizon to form a 'black hole' 
which will contain a singularity; and secondly, that there is a singularity in 
our past which constitutes, in some sense, a beginning to the universe. Our 
discussion is principally aimed at developing these two results. They depend 
primarily on two areas of study: first, the theory of the behaviour of families 
of timelike and null curves in space-time, and secondly, the study of the 
nature of the various causal relations in any space-time." 

Thus, for the authors, a mathematical model of the space-time universe 
consists of 

(i) A differentiable 4-manifold 9H (connected, Hausdorff, paracompact, 
C00-manifold without boundary)—this represents the amorphous qualitative 
structure of the cosmos. 

(ii) A Lorentz metric tensor g, with components gab(x) in any local chart 
(xa),a = 1, 2, 3, 4, of 911 (a symmetric covariant 2-tensor field of class C , 
r > 2, with the relativistic signature 2, or ( + + H— ))—this represents the 
special relativistic or Minkowski structure on each tangent space Tp of 9H, 
and permits the construction of spacelike and nonspacelike (timelike and 
lightlike or null) tangent vectors in Tp. The nonspacelike vectors fill the 
lightcones in each Tp and these define the basic causal structure on 91L. 
Timelike and null geodesies define the world-trajectories or histories of free 
particles and light rays. 
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(iii) A matter energy-momentum tensor T, with components Tab(x) in any 
local chart (xa) on 91L (a symmetric covariant 2-tensor field of class C , 
satisfying the "conservation condition" 7* b \h = 0)-this represents the local 
effect of matter and energy on the quantitative or inertial structure of the 
universe £DH. The most commonly assumed form for T is that of a perfect 
fluid 

Tab = (ix + p)VaVb + pgab. 

Here the unit timelike 4-velocity vector is V, the scalar energy density is 
JU, > 0, and the pressure is;?. If p = 0, the fluid reduces*to a stream of dust 
particles of density JU,. In empty space-time T = 0. 

(iv) An Einstein field equation for g on 91L (a quasi-linear hyperbolic 
partial differential equation to determine gab from Tab and possible boundary, 
asymptotic, and symmetry hypotheses) 

Here the Ricci curvature tensor Rbd = Rbad is the contracted Riemann curva­
ture tensor, the scalar curvature R = R£, and A is the "cosmological con­
stant" often assumed zero. See Chapter 7 for a discussion of this partial 
differential equation. (Recall that Rab involves second derivatives of gab.) 

In this review I shall first tabulate the 10 chapters with a brief comment on 
the contents of each (there are also two appendices: A, an essay by P. S. 
Laplace on the trapping or capture of light by a massive Newtonian gravita­
tional body; B, an exposition of the theory of G. D. Birkhoff characterizing 
the Schwarzschild solution). Following this tabulation I shall attempt a 
critique of some of the major physical and mathematical results expounded in 
the text. Since the authors claim nothing less than an explanation of the birth 
and death of the cosmos, some philosophical comments are also in order. 

Chapter 1. The role of gravity. This is an exposition of the historical 
background for the theory, an insight into the geometrical significance of 
geodesies and conjugate points, and an outline for the remainder of the text. 
Accordingly, an extensive quote is useful here: 

"Not only is gravity the dominant force on a large scale, but it is a force 
which affects every particle in the same way. This universality was first 
recognized by Galileo, who found that any two bodies fell with the same 
velocity. This has been verified to very high precision in more recent experi­
ments by Eotvos, and by Dicke and his collaborators (Dicke 1964). It has also 
been observed that light is deflected by gravitational fields. Since it is thought 
that no signals can travel faster than light, this means that gravity determines 
the causal structure of the universe, i.e., it determines which events of 
space-time can be causally related to each other. 

These properties of gravity lead to severe problems, for if a sufficiently 
large amount of matter were concentrated in some region, it could deflect 
light going out from this region so much that it was in fact dragged back 
inwards. This was recognized in 1798 by Laplace, who pointed out that a 
body of about the same density as the sun but 250 times its radius would 
exert such a strong gravitational field that no light could escape from its 
surface. That this should have been predicted so early is so striking that we 
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give a translation of Laplace's essay in an appendix. 
One can express the dragging back of light by a massive body more 

precisely using Penrose's idea of a closed trapped surface. Consider a sphere 
S~ surrounding the body. At some instant let ?T emit a flash of light. At some 
later time t, the ingoing and outgoing wave fronts from ?T will form spheres 
3\ and ?T2 respectively. In a normal situation, the area of ^ will be less than 
that of ?T (because it represents ingoing light) and the area of ?T2 will be 
greater than that of ?T (because it represents outgoing light; see Figure 1). 
However if a sufficiently large amount of matter is enclosed within ?T, the 
areas of 9^ and ?T2

 w^* both be less than that of ?T. The surface ?T is then 
said to be a closed trapped surface. As / increases, the area of 9"2 will get 
smaller and smaller provided that gravity remains attractive, i.e. provided that 
the energy density of the matter does not become negative. Since the matter 
inside ?T cannot travel faster than light, it will be trapped within a region 
whose boundary decreases to zero within a finite time. This suggests that 
something goes badly wrong. We shall in fact show that in such a situation a 
space-time singularity must occur, if certain reasonable conditions hold." 

"In Chapter 8 we discuss the definition of space-time singularities. This 
presents certain difficulties because one cannot regard the singular points as 
being part of the space-time manifold 9H. 

We then prove four theorems which establish the occurrence of space-time 
singularities under certain conditions. These conditions fall into three cate­
gories. First, there is the requirement that gravity be attractive. This can be 
expressed as an inequality on the energy-momentum tensor. Secondly, there is 
the requirement that there is enough matter present in some region to prevent 
anything escaping from that region. This will occur if there is a closed 
trapped surface, or if the whole universe is itself spatially closed. The third 
requirement is that there should be no causality violations. However this 
requirement is not necessary in one of the theorems. The basic idea of the 
proofs is to use the results of Chapter 6 to prove there must be longest 
timelike curves between certain pairs of points. One then shows that if there 
were no singularities, there would be focal points which would imply that 
there were no longest curves between the pairs of points." 

Chapter 2. Differential geometry. This is a standard treatment of the 
fundamental properties of differentiable manifolds, differentiable maps, vec­
tor and tensor fields, and fiber bundles. The definitions are precise and 
intrinsic, and the calculations are displayed in coordinate notation. The only 
unusual features are the attention to the Weyl conformai curvature tensor (as 
the trace-free part of the Riemann curvature tensor), and the theory of 
hypersurfaces and Gauss' theorem in the case of a Lorentz metric. 

Chapter 3. General relativity. "The mathematical model we shall use for 
space-time, i.e. the collection of all events, is a pair (911, g) where 91L is a 
connected four dimensional Hausdorff C00 manifold and g is a Lorentz 
metric (i.e. a metric of signature + 2) on 91L." 

Two models will be taken equivalent if they are globally isometric. Further 
it is assumed that (91L, g) is inextendible, that is, it is not isometric to a 
proper open submanifold of some extension (911', g'). This last hypothesis is 
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made to try to make certain that all singularities, evidenced by inextendible 
yet incomplete nonspacelike geodesies, arise from intrinsic physical causes 
rather than from mathematical devices such as excising a closed subset of 
911. 

The postulates for the matter field Tab are local causality (essentially that 
the matter dynamics satisfies hyperbolic partial differential equations whose 
characteristic cones are compatible with the light cones of g), and local 
conservation Tab\b = 0. This latter condition implies a strict conservation law 
only when some symmetry of space-time (say, a Killing vector field) is 
present. 

The "derivation" of the format for special energy-momentum tensors 
follows a standard program of variational techniques for appropriate 
Lagrangians L. 

The Einstein field equation is defended in the usual ways as an analogue of 
the Laplace-Poisson equation for the Newtonian potential, and also by the 
variation of the integral f[(Siryl(R - 2A) + L]dv. 

Certainly this field equation 

Kb ~ liRZab + Ag„ = %mTab 

is one of the weakest links in the entire theory. It is absolutely foundational, 
yet rests on historical tradition, rarified intuitive guesswork, and very limited 
physical observation. The authors mention the competitive theories of 
Nordstrom, Hoyle-Bondi, and also of Brans-Dicke, but proceed on the basis 
of Einstein's General Relativity. 

Chapter 4. The physical significance of curvature. Consider a congruence of 
timelike smooth curves in ÇJÏt with timelike unit tangent vectors V initially 
orthogonal to a spacelike hypersurface %. These curves could represent the 
histories of small test particles, or the flow lines of a perfect fluid. 

For simplicity of exposition we consider the case where the flow lines are 
timelike geodesies orthogonal to an initial spacelike hypersurf ace %. Then 
Va\b = Xab is ^ e second fundamental form on %. We recall some methods of 
the calculus of variations to measure the expansion of the fluid flow lines. 

Choose an orthonormal basis Ea, a = 1, 2, 3, for the spacelike tangent space 
Hq at an initial point q E %, and propagate this basis along the flow by 
parallel translation to form a corresponding basis at each point y(s), after a 
proper time s, on the geodesic initiating at y(0) = q. Suppose X(a) is a curve 
in % with tangent vector Z G Hq. Then, by transporting this curve along the 
fluid flow we define the tangent vector Z(s) at y(s). That is, Z(s) is a 
variational vector measuring the separation of infinitesimally neighboring 
geodesies. Let ±Z(s) be the component of Z(s) which is orthogonal to V and 
denote its components by ±Z = ZaEa. From the definition of this variation 
vector x Z w e compute dZa/ds = V^ Z&. Thus, (misprint in equation 4.39), 
Za(s) = Aaj3(s)Z/3(0) where the 3 x 3 fundamental matrix A(s) = Aafi(s) 
satisfies 

dA^(s)/ds = Va;yAyfi(s)9 Aa/3(0) = 8ap. 

Upon differentiating we obtain the Jacobi variational equation 
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with the initial conditions 

Aafi(°) = 8afi> dAafi(Q)/ds = Xafi' 

In the case of a fluid flow the matrix Aap can be regarded as representing 
the shape and orientation of a small element of fluid which is spherical at the 
initial point q. As is customary in fluid mechanics, we define the volume 
expansion coefficient (negative of divergence) by 

Ö = ( d e t ^ t ) - 1 ^ ( d e t ^ ) = ^ ( l n d e t X ) . 

Then a direct ingenious calculation yields the basic equation discovered 
independently by Landau and Raychaudhuri, 

dB Ids = -RahV
aVb - 2o2 - \02 

where a2 > 0 is the shear effect on the expansion 0 (s) (and the vorticity term 
vanishes since ^4(0) = ƒ). If we assume that RabV

aVb > 0, then the 
Raychaudhuri equation yields the important differential inequality 

dB/ds < - } 0 2 . 

If 0(0) = XabSab < 0, the flow lines are initially convergent, and then this 
nonlinear inequality forces 9 —> — oo at a point p after a finite proper time in 
the future. This would imply that det A (s) —> 0 so that p is a conjugate point 
to % along the geodesic flow line through q. A similar argument could yield a 
conjugate point to % in the past. 

It is this deduction (Propostion 4.43)-that a positive Ricci curvature pro­
duces conjugate points-which is the heart of the mathematical argument of 
the text. The physical justification for this curvature hypothesis is the energy 
condition TabV

aVb > 0 which is satisfied for a dust stream, or a fluid with 
negligible pressure p. From the Einstein field equations (say, with A = 0) 

Rab = ^{Tab-\Tgab), 

so we obtain the required timelike convergence condition 

RabV
aVb = %<n(TabV

aVb + \T) > 0. 

The final section of Chapter 4 concerns the variation of arclength, using the 
techniques of the calculus of variations. Using the theory of the first varia­
tion, we can characterize a geodesic in Riemannian geometry as minimizing 
the arc length locally. Similarly, a timelike geodesic in Lorentzian geometry 
maximizes the proper time duration, at least locally. In considering the 
second variation L(ZV Z2) we shall say that a timelike geodesic curve y(t) 
from a spacelike hypersurface % to a point p is maximal if L(ZV Z2) is 
negative semidefinite. Thus if y(t) is not maximal there is a small variation 
which yields a longer (proper-time) curve from % to p. By standard varia­
tional methods we now obtain: 

PROPOSITION 4.5.9. A timelike geodesic curve y(t) from % to p is maximal if 
and only if there is no point in (%,p) conjugate to % along y. (Misprint occurs 
in statement in text.) 

The remaining logical step, namely the existence of a longest timelike 
geodesic from p to % when 9TL is complete, is proved in Chapter 6 
(Proposition 6.7.1) after certain problems in causality are clarified. 



810 BOOK REVIEWS 

Chapter 5. Exact solutions. Numerous classical solutions (91L, g) are ex­
amined as global Lorentz manifolds. In particular, completeness, causal 
structure, event horizons, asymptotic behavior, and symmetries are specified 
intrinsically. 

The classical models are those of Minkowski (special relativity), de Sitter 
and anti-de Sitter worlds (constant curvature), Robertson-Walker-Friedmann 
worlds (expanding universe), Gödel space, Taub-NUT space, with some 
indication of the plane wave solutions in empty space. 

A thorough discussion, with many diagrams, is given for the local solutions 
of Schwarzschild (spherically symmetric) and Kerr (axisymmetric). The singu­
larity at r = 0 in the Schwarzschild world (91L, g) is real (an intrinsic 
curvature becomes infinite as r ^ 0), but that at r = 2 m (Schwarzschild 
radius) is not physically singular since there is an extension ((D1L*, g*) of (91L, 
g) through r = 2m, as determined by Kruskal. In fact the Kruskal extension 
is the unique analytic and locally inextendible extension of the Schwarzschild 
solution. Similar results hold for the Kerr world. 

The amount of detailed special information and conceptual analysis con­
tained in these classical models and examples is overwhelming. They should 
be a source of scientific inspiration for decades to come. For instance, even 
the Minkowski space F4 (R4 with flat Lorentz tensor) contains new lessons. 
Namely, all of F4 is conformally diffeomorphic to a proper subregion of the 
Einstein cylindrical space (product S3 X R l). Using this embedding of F4 in 
S3 X R l we can study the causal structure of F4 at infinity. Similar confor­
mai embeddings of de Sitter and the Robertson-Walker spaces in S3 X Rl 

are possible. The Penrose diagram is a convenient graphical scheme for 
illuminating these embeddings. 

The reviewer looked in vain for models displaying the various Petrov types 
of gravitational waves. Also here, or in the next Chapter 6, there could well be 
an indication of Zeeman's theorem that any causal automorphism of F4, or of 
the Einstein cylindrical world S3 X R\ is an isometry (after scale change). 

Chapter 6. Causal structure. The causal structure of a Lorentz manifold 
(9lt, g) is the collection of all Lorentz metrics conformally equivalent to g. 
Thus the causal structure on 9H can be specified by the field of light cones, 
or by the causal relation q < p (q precedes/? along a future-directed timelike 
curve). For this relation to be defined we need a time-oriented or isochronal 
world (which can always be achieved using a 2-fold covering space-time). We 
assume this is henceforth the case. 

However if there were a closed timelike curve on 911 (which is always the 
case when 9H is compact), then our notions of physical causality and free 
will would be violated. Various kinds of causality conditions and hypotheses 
are possible as one rules out recurrent timelike, lightlike, or nonspacelike 
curves. Since the discipline of topological dynamics has created a whole 
hierarchy of kinds of recurrence (periodic, almost periodic, pointwise, re­
gional, etc.) these give rise to corresponding kinds of causality violations. One 
sensible mental anchor in this phantasmagoric maelstrom is the concept of 
"structural stability" which here surfaces as the stable causality condition. 

We say that the stable causality condition holds on 9H if the spacetime 
metric g has an open neighborhood in the C° topology (compact-open 



BOOK REVIEWS 811 

topology on tensor fields on C3IL) such that there are no closed timelike curves 
in any of the metrics belonging to this neighborhood. Then one can prove the 
interesting: 

PROPOSITION 6.4.9. The stable causality condition holds everywhere on 9IL if 
and only if there is a function ƒ on 911 whose gradient is everywhere timelike. 

The primary goal of this study of causality is to determine a partial Cauchy 
surface, that is, a spacelike hypersurface S which no nonspacelike curve 
intersects more than once. Moreover a partial Cauchy surface S is a global 
Cauchy surface in case each point p E 5H lies either in the past or future 
domain of dependence of S , that is, £> ~(S ) U D+{%) = GJ\i. Thus a global 
Cauchy surface is a spacelike hypersurface which every inextendible non-
spacelike curve intersects exactly once. 

Suppose 911 = Rl X S where S is a compact 3-manifold and for each 
t0 E: Rl the submanifold t0 X S is a Cauchy surface for ?Jlt. From 6.7.1 we 
obtain the following 

COROLLARY. For eachp E D + ( S ) there exists a timelike geodesic curve y(t) 
which is orthogonal to S , and which realizes the longest proper time from S to 
p. Moreover, from the theory of the second variation, y(t) contains no point 
conjugate to S between S and p. 

We can replace the assumption that S is compact by the requirement that 
9H is globally hyperbolic in the sense of Leray. This important existence 
theorem is proved by the direct method of the calculus of variations. 

Chapter 7. The Cauchy problem in General Relativity. The Einstein field 
equations 

Rab -\Rgab = %irTab 

are meant to determine the Lorentz metric tensor gab on the 4-manifold 91L, 
in terms of the physically prescribed energy-momentum tensor Tab. There is a 
reduced form of the Einstein tensor, locally written 

Rab - \Rgab = \ giJdijg
ab + (terms in dig

cd and gef), 

provided we establish the "gauge harmonic conditions" 

If Tab = 0 (empty space-time), or Tab is reasonably behaved, then the field 
equations form a quasilinear hyperbolic system of 10 equations for the 10 
components of the metric tensor. Hence the Cauchy initial value problem is 
well posed; developing g from its initial value h which is a Riemannian metric 
on some initial 3-manifold S , and normal data 3g on S . The 6 initial 
components of this Riemann metric h are sufficient data to establish the 
existence of the solution g of the reduced Einstein equations, in view of the 4 
guage conditions imposed above, provided h satisfies the necessary restriction 
of the field equations to S . Locally every solution g of the full Einstein field 
equations (say in empty space-time) satisfies the gauge conditions, and hence 
the reduced Einstein equations, relative to some differentiable coordinate 
chart; although such local coordinates might not be related to any particular 
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metric. Thus we expect the solution g to be unique only up to a diffeo-
morphism (not isometry) of 91L. 

At least this is the classical or intuitive viewpoint. But this brief discussion 
leaves out many serious problems-what are the gauge conditions in an 
invariant description and why can they be demanded; what initial data are 
admissible and do they impose topological restrictions on S ; how can one 
define the Cauchy problem in terms of S when the space-time (9H, g) itself 
is to be developed? 

In this chapter a technical proof is provided for the existence and unique­
ness of the global Cauchy development (9!t, g) from S with appropriate 
initial data <o. The global Cauchy problem for the Einstein field equations 
(first, in empty space-time) is thus specified as follows: 

Given: a 3-manifold S with data to — (h, x) where h is a Riemannian 
metric on S and x is a symmetric second order tensor which plays the role of 
the second fundamental form for the hypersurface § . Require that the 
necessary compatibility or constraint equations hold on S 

A \\dnce A \\encd U> 

i(^' + (x%c)2-xaV\A,/) = o, 

where R' is the curvature scalar of h and the covariant differentiation is 
relative to h on S. 

To find: a differentiable imbedding of S in a Lorentz 4-manifold (91L, g) 
such that g satisfies the Einstein field equation in 91L and reduces to h on the 
global Cauchy hypersurface S , for which the second fundamental form is x-

The basic result of 7.5 asserts that there exists such a local (in time) Cauchy 
development (911, g) from (§>,«). The local uniqueness theorem asserts that 
two such local Cauchy developments (911, g) and (9K/, g') are equivalent 
under a diffeomorphism of 91L onto 911 ' (at least in a neighborhood of S), 
carrying g to g', and holding S fixed pointwise. 

The first part of the proof deals with the local solution of quasilinear 
hyperbolic systems, such as the reduced Einstein equations in empty space-
time. The methods are standard in the theory of differential equations, but 
the intricate calculations are carefully presented. For linear systems with 
analytic data the Cauchy-Kowalevski power series methods produce the 
solution. For differentiable data, we approximate by analytic data and use 
some a priori estimates that the solutions depend continuously, in an ap­
propriate Hilbert-Sobolev space W4+a, on the data. For quasilinear equations 
we are led by successive approximations through a sequence of linear equa­
tions. A fix-point theorem then establishes the required local existence 
theorem. 

Next the authors attack the problem of the global existence of the Cauchy 
development (911, g) from appropriate initial data (§>, ic). Here the exposi­
tion becomes rather chaotic, as though the writers and the readers are equally 
exhausted. 

The global construction begins with the differentiable product 9ÎL = S X 
R9 and we introduce an auxiliary Lorentz metric g on 91L, at least in a 
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neighbourhood of S . The gauge conditions are now formed using the 
covariant derivatives for g. 

Usually g is not locally flat, but the Christoffel symbols are nearly constant 
in a sufficiently small region. Such an approximation is now adequate to 
employ the above local existence theorem for g. 

For the global extension of g (over the global 3-space S , but for short time 
t) we must consider the solution <o = (h, x) of the elliptic system of constraint 
equations on § . Then we construct local solutions g near each point of 
S Ĉ 9ft and patch these together to obtain the desired Cauchy development 
(911, g). It seems possible that both of these steps might encounter some 
topological obstructions on S , but the authors assert that this is not the case. 

Finally there is the global development (911, g) for a maximal time 
duration. By general arguments jon the partially ordered set of local develop­
ments the authors show that (9H, g) is unique. This uniqueness rests on the 
fact that S is a global Cauchy surface in 911. Otherwise the uniqueness fails. 
For example, consider S to be the Riemannian flat torus T3 with x = 0. 
Then either T3 X R or T3 X Sl = T4 could serve as the locally Minkowski 
manifold 911. 

The authors then discuss the stability of the solution (9tt, g), that is, the 
solution depends continuously on the data (S , co). This continuity can be 
established in case of C°°-data but is not wholly satisfying to the authors in 
the sense of Wr-data. This uncertainty gives rise to fears that perhaps some 
unexpected esoteric shock-wave phenomena might be undetected. 

At the end of the chapter there is a very brief statement that the same types 
of results are valid for the Einstein equations with matter and energy present. 

Chapter 8. Space-time singularities. The most important theories of this text 
concern the mathematical existence proofs of singularities in an inextendible 
Lorentz manifold (911, g), and the interpretations for astrophysical and 
cosmological models. Since there is no intrinsic positive-definite metric on 91L 
there arise difficulties in defining the concepts of completeness, or the 
boundary at infinity. Yet the existence of finite inextendible nonspacelike 
curves is taken as the basic condition defining singularities. 

On the Lorentz manifold (911, g) a timelike geodesic is complete if it can 
be extended in 91L for all real values of the proper time. If a timelike geodesic 
in 9H were incomplete, then an inertial observer could suddenly cease to 
exist for no evident physical reason. Even lightlike geodesies possess a 
distinguished affine parameter, although this is not easy to understand 
physically, and thus admit the property of completeness. The authors state: 
"We shall therefore adopt the view that timelike and null geodesic complete­
ness are minimum conditions for space-time to be considered singularity-free. 
Therefore if a space-time is timelike or null geodesically incomplete, we shall 
say that it has a singularity." 

But then they continue to protest: 
"If one is going to say that there is a singularity in a space-time in which a 
freely falling observer comes to an untimely end, one should presumably do 
the same for an observer in a rocket ship. What one needs is some generaliza­
tion of the concept of an affine parameter to all C ̂ curves, geodesic or 
nongeodesic." 
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In order to enlarge the class of singularities to incorporate incomplete 
C ^curves, we define arc-length along each such curve 6 by using a basis of 
tangent vectors along G obtained by parallel translation according to the 
Christoffel connection. More technically we note that the bundle of Lorentz 
orthogonal frames 0 ( 911 ) is automatically a parallelizable manifold. Thus a 
Euclidean metric at any one point of 0 (911) defines a global Riemann metric 
on the bundle 0 (91l)-and any two such Riemann metrics are equivalent. We 
define (911, g) to be ^-complete just in case the bundle 0 (911) is complete as 
a Riemannian manifold. It might be advantageous to limit these considera­
tions to nonspacelike C ^curves in 911, but this concept seems to be rather 
inaccessible mathematically. 

DEFINITION. A space-time ( 911, g) is singularity-free if it is 6-complete. 
While such incomplete singularities are mathematically significant they 

seem to lack any physical cause. In cosmology one might demand some 
evidence of very strong gravitational fields causing the break-down of space-
time, or of its description within General Relativity. In this spirit we define a 
curvature singularity if the scalar curvature (or some other intrinsic curvature 
of either the Lorentz manifold 911 or the Riemann manifold 0(911)) be­
comes unbounded along some incomplete curve in 911. 

In view of the results on conjugate points in Chapter 6 it is easy to prove 
that certain types of space-time are geodesically incomplete and so contain 
singularities. For instance, consider a slightly weakened form of Hawking's 
theorem: 

THEOREM 4'. Space-time (911, g) is not timelike geodesically complete if: 
(1) RabK

aKb > 0 for every nonspacelike vector K, 
(2) there exists a compact spacelike 3- surface S which is a global Cauchy 

surface for 911, 
(3) the unit normals to S are everywhere converging {or everywhere diverg­

ing) on S. 

PROOF. Since 9(0) < — e < 0 everywhere on S , we conclude that there is 
a conjugate point (with s < 3/e) on each geodesic y normal to S . If 9It were 
geodesically complete, take a point p = y(4/e) and construct the longest 
timelike geodesic y from S to/?. Since y is longest, it must be maximal and so 
admits no conjugate point between 9H and /?-which provides a contradic­
tion. 

The first such theorem on singularities was obtained by Penrose (1965). "It 
was designed to prove the occurrence of a singularity in a star which 
collapsed inside its own Schwarzschild radius. If the collapse were exactly 
spherical, the solution could be integrated explicitly and a singularity would 
always occur. However it is not obvious that this would be the case if there 
were irregularities or a small amount of angular momentum. Indeed in 
Newtonian theory the smallest amount of angular momentum could prevent 
the occurrence of infinite density and cause the star to re-expand. However 
Penrose showed that the situation was very different in General Relativity: 
once the star had passed inside the Schwarzschild surface (the surface 
r = 2m) it could not come out again. In fact the Schwarzschild surface is 
defined only for an exactly symmetric solution but the more general criterion 
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used by Penrose is equivalent for such a solution and is applicable also to 
solutions without exact symmetry. It is that there should exist a closed trapped 
surface ?T." By this is meant a C 2 closed spacelike two-surface (normally, S2) 
such that the two families of null geodesies orthogonal to ?T are convergent at 
?r. 

THEOREM 1. Space-time (9H, g) cannot be null geodesically complete if: 
(1) RabK

aKb > Ofor all null vectors Ka, 
(2) there is a noncompact Cauchy surface % in 9tL, 
(3) there is a closed trapped surface 5" in 911. 

The method of proof is to show that the boundary of the future of ?T would 
be compact if 91L were null geodesically complete. This is then shown to be 
incompatible with % being noncompact. 

The results on the physically appealing concept of curvature singularity are 
rather sparse. An interesting proposition is 8.5.2. 

If p E 9TL is a limit point of a b-incomplete curve X and if at p, RabK
aKb ^ 

0 for all nonspacelike vectors Ka, then X corresponds to a curvature singularity. 

In conclusion, the authors emphasize that these singularities are structur­
ally stable in the sense that they persist even if the space-time tensors gab and 
Tab are perturbed. Hence they do not depend on idealized symmetries, but 
could have geometric and physical importance in general situations. 

Chapter 9. Gravitational collapse and black holes. 

Chapter 10. The initial singularity of the universe. Since the final two 
chapters deal largely with the interpretations in astrophysics and cosmology 
of the geometry, I shall give a brief review of them together. 

The basic idea is that through self-gravity a star might collapse to a radius 
less than its Schwarzschild radius, and so become a black hole, that is, a 
gravitational source that is invisible to the outside world. The Schwarzschild 
radius of the Sun is 3 Km; thus normal stars are a long way from their 
Schwarzschild radii. While most stars have a mass M of the same order of 
magnitude as M 0 , the Solar mass, there seems to be a critical limit at mass 
ML = 1.5M0. 

"If the mass is less than ML, the star can settle down eventually to a white 
dwarf state in which it is supported by degeneracy pressure of nonrelativistic 
electrons, or possibly to a neutron star state in which it is supported by 
neutron degeneracy pressure. However if the mass is slightly greater than ML, 
there is no low temperature equilibrium state. Therefore the star must either 
pass within its Schwarzschild radius, or manage to eject sufficient matter that 
its mass is reduced to less than ML. 

"Ejection of matter has been observed in supernovae and planetary nebula, 
but the theory is not yet very well understood. . . . Present calculations in 
fact indicate that stars of mass M > 5ML would not be able to eject 
sufficient mass to avoid a relativistic collapse. 

"To summarize, it seems that certainly some, and probably most, bodies of 
mass > ML will eventually collapse within their Schwarzschild radius and so 
give rise to a closed trapped surface." 
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The remainder of Chapter 9 is dedicated to giving a general definition of 
black holes and showing that they probably settle down finally to a Kerr 
solution of the Einstein field equations. The results are technical, difficult, 
and probably provisional. For instance, to define a black hole we must 
consider a space-time (9IL, g) partitioned by a family S (T) of spacelike 
partial Cauchy surfaces. Assume (9ÎL, g) is conformally imbedded in some 
(9ït, g), forming there a manifold with boundary 91L = 9ït U 3 9H. Here the 
boundary 3 9ît consists of two null surfaces §+ and § ~ which represent 
future and past null infinity respectively. 

"We define a black hole on the surface S (T) to be a connected component 
of the set ® (T) = S (r) - J ~ ( 5 + , 9lt). In other words, it is a region of S (T) 
from which particles or photons cannot escape to 5 + ." 

Under various hypotheses on the causal past J ~ and future / + of 5 ± in 
911, and the Cauchy developments D ±(S ), it can be shown that black holes 
are ever increasing. That is black holes can merge together, and new black 
holes can form as a result of further bodies collapsing; however black holes 
can never bifurcate. 

In Chapter 10 the expansion of the universe is considered to be similar to 
the collapse of a star, except that the time sense is reversed. The astronomical 
evidence for this view takes into account the background black-body radia­
tion of 2.7° K, which is isotropic over the sky, and general information on the 
Hubble factor for the red-shift of galaxy spectra. These data, together with 
philosophical principles of the homogenity of the spatial universe, lead to a 
Robertson-Walker model of the expanding universe. The incompleteness 
results of Chapter 8 (say Theorem 4') explain that the cosmos has expanded 
out of an initial singularity some time in our past. 

After such a detailed exposition of the contents of the text, let me close this 
essay with only a few comments on the overall significance of the mathemati­
cal and physical theories expounded. 

The most interesting mathematical aspect of the text is the systematic 
applications of the calculus of variations to global Lorentz geometry. Until 
recently the study of Lorentz manifolds consisted of a few very general results 
of differential topology, and several very particular results involving symme­
try groups. Now research in Lorentz geometry can develop along patterns 
quite familiar from Riemann geometry, but with important and stimulating 
differences. 

Also the text provides an important contribution to the global theory of 
hyperbolic partial differential systems. Just as the global theory of elliptic 
equations is treated on Riemannian manifolds, so hyperbolic equations be­
long on Lorentz manifolds. Further the singularity theorems of Chapter 8 
may eventually become part of this theory together with a variety of other 
phenomena suggested by turbulence, shock-waves, bifurcation, and 
catastrophe theory. In other words the singularities already explored may be 
only the forerunners of a whole series of geometric constructions of even 
greater physical significance-even for cosmology. 

Concerning the physical aspects of the text, I express admiration tempered 
with caution. The authors advance a theory of the birth and death of the 
universe; do they prove it? The reviewer, who is generally rather skeptical, 
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remains a skeptic here. I believe that the observational data are too feeble, 
and the physical theory too tentative to support strong and conclusive beliefs. 

"It seems to be a good principle that the prediction of a singularity by a 
physical theory indicates that the theory has broken down, i.e. it no longer 
provides a correct description of observations. The question is: when does 
General Relativity break down? One would expect it to break down anyway 
when quantum gravitational effects become important. . . . This would corre­
spond to a density of 1094 gm cm - 3 . However one might question whether a 
Lorentz manifold is an appropriate model for space-time on length scales of 
this order." 

Cosmology is not a "hard experimental science" in the sense of 
aerodynamics, or even macro-economics. That is, the experimenter does 
not have access to an effective input control to the physical system. While 
there are plenty of observed data from millions of stars, they are not 
necessarily the data one might want if there were a choice. Unless we greatly 
modify our philosophy of scientific knowledge, cosmology must remain a 
speculation. 

I recall once hearing a lecture on economics where the authority asserted 
something like, "since the coefficient of o2 is negative, we must expect the 
government to raise taxes", and I said to myself, "Hey, wait just a minute-
let's multiply by — 1". I had somewhat the same emotion when I read that the 
coefficient of a2 in Raychaudhuri's equation is negative, therefore we must all 
fall eventually into a black hole and this is our final fate. But even if this is 
the case, it might not be too dismal. Remember, Alice found a Wonderland. 
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The theory of stochastic processes has mushroomed in the last twenty 
years; not only because of its intrinsic interest, but also because it is closely 
connected with so many different areas of mathematics. It feeds on analytic 
techniques from measure theory, Fourier analysis, semigroups of operators 
and spectral theory, potential theory, ergodic theory; and in turn it has 
applications to topology, functional inequalities, differential equations, infor­
mation theory and prediction theory, and through the stochastic integral to 
several areas of mathematical physics. Thus stochastic processes is a good 
modern example of an area of mathematics which has been stimulated by its 
applications, while itself leading to extensive research in more established 
areas in order to develop the techniques needed. 

The essential apparatus of mathematical building bricks is both extensive 
and deep. There is therefore no hope of writing a self contained text book of 
acceptable length which covers more than a small subset of the theory. The 
subset chosen by Ash and Gardner is made by selecting some special 


