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number of really challenging results for the reader to come to grips with, and 
to mull over later. If this is accepted as a valid criterion, then Wang's book 
will leave a lot of people unsatisfied. 

In matters of presentation, this book leaves a great deal to be desired. It 
may seem harsh to criticise numerous misuses of language in a book by an 
author for whom English is a second language. However, it is not only the 
author who should bear the brunt of such criticism; it is also the persons 
responsible for the production of his book. When one finds sentence after 
sentence that does not, by any stretch of the imagination, read decently, and 
a confusion of similar-sounding but different words (e.g. "conversion" instead 
of "converse") then the conclusion has to be that the editorial staff neglected 
their job. On the other side, neither is it unreasonable to express the regret 
that the author did not trouble to have his typescript read over by a 
native-speaking colleague. 

This book is about a nice circle of ideas with some interesting, still-unsol
ved problems. The subject does not currently occupy the centre stage of 
research in harmonic analysis; however, it has some good things to offer, and 
it is a pity that the present treatment of it was not just that much better. 
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Hausdorff compactifications, edited by Richard E. Chandler, Marcel Dekker, 
Inc., New York and Basel, 1976, vii + 146 pp., $16.50. 

Work on compactifications began in 1924 with Tietze, Alexandroff and 
Urysohn. In 1930, Tychonoff characterized completely regular (Hausdorff) 
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spaces as those which can be embedded in a compact Hausdorff space. Using 
Tychonoff's method, Cech constructed fiX, the largest Hausdorff compac-
tification of a completely regular space X. Independently, using algebraic 
techniques, Stone also produced the compactification (IX. 

In 1938, Wallman extracted the set-theoretic portion of Stone's work to 
construct the Wallman compactification which agrees with /3X when X is 
normal. (For nonnormal X, the Wallman compactification is not Hausdorff.) 
Stone's work was also modified by Gelfand-Shilov in 1941 and elaborated 
and generalized by Hewitt in 1948. 

Once one Hausdorff compactification of a space has been constructed, 
other Hausdorff compactifications can be obtained as suitable quotient 
spaces. 

Tychonoff's original embedding was into a product of closed intervals 
indexed by C*(X, R), the set of bounded, continuous real-valued functions 
on X. Proceeding in an analogous manner and using appropriate subsets of 
this indexing set, any given Hausdorff compactification of X can be obtained. 
This procedure provides the underlying unity for Chandler's book, although 
other methods for obtaining Hausdorff compactifications are discussed and 
contrasted with the Tychonoff procedure. 

Chandler's book is written so as to bring a student to the forefront of 
research in the area of Hausdorff compactifications. The only prerequisite is 
an introductory course in general topology; otherwise the book is self-
contained. The first four chapters provide the necessary background material 
for the last four chapters, each of which is devoted to a specific area of 
research. 

Much of the material in the first half of Chandler's book may be found in 
Gillman and Jerison [GJ], but here it has been reorganized and modified. 
Additional topics include a discussion of the upper semilattice K(X) of 
equivalence classes of Hausdorff compactifications and the result of Sier-
pinski that to each point of fiN \ N there corresponds a non-Lebesgue 
measurable function. To further indicate the complexity of fiN, the Stone-
Cech compactification of the integers, Chandler gives two proofs of the 
nonhomogeneity of fiN \ N. The first, due to Rudin, involves the existence of 
P-points; the second, due to Frolik, uses the concept of the type of a point in 
fiN \ N relative to a countable discrete subset of fiN \ N. 

All constructions of fiX require some form of the Axiom of Choice. Using 
the concept of compact* defined by Comfort, Chandler presents a 
construction of fiX and shows that it is compact* without using the Axiom of 
Choice. With the Axiom, compact* implies compact. 

The research areas discussed in the last half of the book represent the 
author's own interests, and he has concluded each of these discussions with 
an unsolved problem. The material presented here has been taken directly 
from the research literature and has not been previously compiled in book 
form. 

Topic 1. The upper semilattice K(X) of Hausdorff compactifications of X 
has a largest element, fiX, and, if X is locally compact, has a smallest element. 
Thus, if X is locally compact, K(X) is a complete lattice, and moreover it is 
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determined by fix \ X. (That is, if X and Y are locally compact, then K(X) 
and K(Y) are isomorphic if and only if fiX \ X and BY \ Y are 
homeomorphic.) Moreover, if K(X) is a complete lattice then X is locally 
compact. For nonlocally compact X, the situation is much more complicated. 
If pX \ X is discrete and C*-embedded in /3X, then K(X) is a lattice. If X 
satisfies the first axiom of countability but is not locally compact, K(X) is not 
a lattice. Thus the first problem is to give intrinsic conditions on X which are 
necessary and/or sufficient for K(X) to be a lattice. 

Topic 2. If aX G K{X) then aX \ X is called a remainder of X. For finite 
n, the spaces X with | /3X \ X\ = n are completely characterized as are those 
for which \aX \ X\ = AÏ for some aX E ^ (Z) . A characterization of spaces 
having \(5X \ X\ < «0 is also known. If \fiX \ X\ < 2C then X is pseudo-
compact (all continuous real-valued functions on X are bounded), but in 
general, remainders with cardinality between N0 and 2C have not been studied. 
Thus the second problem is to obtain necessary and/or sufficient conditions 
on X to guarantee that X has remainders with specific cardinality between N0 

and 2C. 

Topic 3. Remainders are again considered, but now from a topological 
rather than a cardinality viewpoint. Almost all topological results on 
remainders are for locally compact spaces. A locally compact, nonpseudo-
compact space X has both connected and totally disconnected remainders. In 
fact, any weak Peano space can be a remainder for such an X. If fiX \ X = 
n^-iiV/JS where N* is the one-point compactification of the integers for each 
n9 then the remainders of X are precisely the compact metric spaces. For 
nonlocally compact spaces, the little that is known is in terms of the closure 
of the remainder in the compactification, rather than in terms of the remain
der itself. The third and fourth problems are in this area and are of a general 
nature. 

Topic 4. Modifying Wallman's procedure for obtaining the Wallman 
compactification, Frink obtained a family of Hausdorff compactifications of 
completely regular spaces and posed the question as to whether each 
compactification in K(X) could be obtained in this way. Such a compactifi
cation is called a Wallman-Frink compactification. (Actually, Banaschewski 
considered this approach prior to Frink, but has not received proper credit in 
the literature.) Frink's original question has been reduced to showing that 
every Hausdorff compactification of every discrete space is a Wallman-Frink 
compactification. The last problem is whether or not the latter is true. 

Although there is probably more literature on this last topic than any other, 
Chandler gives it the least coverage. As things have turned out, however, this 
omission is not too serious. Within the last few months this last problem has 
been solved by V. I. Ul'janov in Moscow, who has shown the existence of a 
compactification of N which is not of the Wallman-Frink type. Thus, except 
for those who wish to classify those spaces all of whose compactifications are 
Wallman-Frink, this area will have lost considerable interest. 

Chandler has written a well-organized and very readable book. It has a 
symbol index, an author index, and a subject index. An extensive 
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bibliography contains papers not referred to in the book itself, but which 
relate closely to the topics covered and which should provide impetus for 
further research. 
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Parallelisms of complete designs, by Peter J. Cameron, Cambridge Univ. Press, 
New York, 1976, 144 pp., $ 9.95. 

Combinatorics is primarily concerned with two general types of questions 
concerning arrangements of objects: enumeration, when there are many 
different arrangements; and the study of structural properties, when the 
desired arrangements are harder to come by. Of course, there is a large 
overlap of these two types, and they have some common origins. 

There are many relationships between combinatorics and other parts of 
mathematics. Of special importance for Cameron's book are the relationships 
with groups, the design of experiments, and coding theory. The relationships 
with finite groups are fairly obvious and go back to the last century: 
finiteness implies the use of counting; interesting combinatorial objects will 
frequently have interesting automorphism groups; and most of the known 
finite simple groups are intimately related with combinatorial objects on 
which they act. Cameron's book is primarily concerned with structural 
properties, just as is much of present-day finite group theory. The structural 
side of combinatorics also arose in the work on the design of statistical 
experiments of R. A. Fisher and his successors. More recently, algebraic 
coding theory has produced new insights into standard combinatorial 
questions of a structural sort. Many of the best designs and codes have tight 
structures (and frequently have large automorphism groups), suggesting some 
sort of classification. This is the point of view espoused in much of this book. 

Structure is studied by building up global properties from local information 
(that is, from configuration "theorems"). Classical examples are the 
coordinatization theorems for projective spaces of dimension at least 3, and 
of projective planes in which Desargues' "theorem" is assumed. However, 
even if a complete classification is unreasonable, it may be possible to 
associate algebraic objects with suitably restricted combinatorial ones, and 
then apply standard algebraic techniques. 

There are three ways an area of mathematics can be surveyed: by a vast, 
comprehensive treatise; by a monograph on a small corner of the field; or by 
a monograph on a cross section. Cameron has chosen the latter method for 
structural combinatorics. After starting with the seemingly specialized notion 
of a parallelism of a complete design, he is led into questions concerning 
finite groups, algebras related to important combinatorial objects, coding 
theory, and a surprising number of familiar topics in combinatorics and finite 


