
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 84, Number 4, July 1978 

CONTINUOUS COHOMOLOGY OF GROUPS 
AND CLASSIFYING SPACES 

BY JAMES D. STASHEFF1 

Topological groups exhibit one of the richest structures in mathematics, 
both because of the variety of significant examples and because of the 
interplay between topology and algebra. The examples range through geome
try and into the study of differential equations. Indeed when Sophus Lie 
began to look at continuous groups around 1870 [35], he was particularly 
interested in those respecting a geometric structure and those respecting the 
solutions of a differential equation. By considering the solution sets of the 
equation as topological objects, it is possible to combine these two aspects; 
this is precisely a point of view now current in the theory of foliations. 
Following Lie, one finds interest not only in Lie groups but in Lie groupoids, 
for example, of local diffeomorphisms of a manifold. 

To an algebraic topologist, there is a special challenge in the interplay 
between the algebra and topology of a topological group or groupoid. He can 
ignore the algebra and consider the cohomology of the underlying space or he 
can ignore the topology and consider the cohomology of the abstract group, 
but clearly neither is a satisfactory approach to these objects. To combine 
both the topology and the algebra, he has a variety of possibilities. 

For any group G, let G8 denote the corresponding group with the discrete 
topology. In particular, any abstract group can be thus topologized. 

Looking at the cohomology of abstract groups as defined in terms of 
multivariable functions on the group, he can restrict attention to the continu
ous functions when dealing with a topological group G. This results in the 
continuous (group theoretic) cohomology HC(G). 

Alternatively, since the abstract group cohomology H(G) = HC(GS) is 
isomorphic with that of an associated space BG8, he can carry the topology 
into the construction of a corresponding classifying space BG and then 
consider H(BG). 

Finally for Lie groups, he can also consider the associated Lie algebra 
G and the Lie algebraic cohomology H(Q). 
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Today I would like to survey what is known about the relations between 
these various cohomologies. Many of the results date from the early 1950's, 
but some of the relations involving BG are quite recent and they are the 
primary import of this account. Beyond that, the applications to Lie 
groupoids, foliations and infinite dimensional Lie algebras are the focus of 
much current activity; I have tried to make this account as up to date as 
possible. (An alternate approach to much of this material has appeared in 
lecture notes of Haefliger [67].) 

The various parts of the paper are organized in terms of the appropriate 
domain category for the cohomology functor in question. 

§1. The abstract (discrete) case. A review of abstract group cohomology. 
§2. Continuous cohomology of groups and extensions. Formal definition and 

an interpretation of H?(G: A) in terms of extensions of topological groups. 
§3. Long extensions and continuous homological algebra. An interpretation 

of HC(G; A) from the point of view of homological algebra. 
§4. Borel cohomology. A brief account of the measure theoretic generaliza

tion appropriate to locally compact groups. Here it is now possible to handle 
the topology axiomatically. 

§5. Lie algebra cohomology. A review of the results of van Est relating 
HC(G) to H(Q; k) and those of Chevalley-Eilenberg with regard to 
H(GV/K). 

§6. Classifying spaces. The construction and the relation to HC(G). The 
Bott spectral sequence between HC(G; S*(Q)) and H(BG) with particular 
attention to G = GL(n, R). 

§7. Continuous cohomology of topological groupoids. The generalization of 
§§2 and 6 to Lie groupoids with particular attention to TH9 the groupoid of 
germs of local diffeomorphisms of Rn. The Bott vanishing theorem and the 
algebra H(WOn) of characteristic classes for foliations. 

§8. Continuous cohomology of vector fields. A brief account of the continu
ous cohomology of infinite dimensional Lie algebras, e.g. %(M), the algebra 
of vector fields on a manifold, and the relation to .Br,,. 

§9. Coda. A description of the relation between HC(G\ H(BG) and the 
cohomology of the discrete (abstract) group Gô

9 including the two topologies 
approach of Bott and Haefliger. In particular, HC(G) is literally intermediate 
between H(G6) and H(BG): we have 

H(G*)&H(BG8)<-HC(G)<-H(BG). 

Also the relation to HBotel(G; R/Z) via differential characters. 

1. TTie abstract (discrete) case [30]. Consider an abstract group G acting on 
a space E so that the quotient map E -» E/G is a covering space. If E has 
trivial homology and is simply connected, the homology of E/G depends 
only on the group G, which appears as the fundamental group of E/G. Hopf 
showed the homology of E/G depends only on the group and expressed the 
dependence algebraically [68, cf., p. 137], Eilenberg and Mac Lane did so 
independently [40] by constructing a particular simplicial space E/G with 
rt-simplices labelled by «-tuples of elements of G. The labelling pattern is 
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indicated in the following picture: There is only one 0-simplex * identified 
with all the vertices 0, 1 , . . . . 

£ft ghk 
A 1-simplex g A 2-simplcx fe h) A 3-simplex fc h, k) 

Continuing this pattern produces an infinite dimensional complex; for the 
group G * Z/2, the result is RP (oo), up to homotopy type. 

Alternatively, this combinatorial structure yields a coboundary formula 
which can be expressed purely group theoretically: 

The group ofp cochains CP(G; A) with coefficients in a right G-module A 
is the group of all functions 

ƒ: GJ<^'^X_G^A 
p 

with coboundary 8: CP(G; A) -» CP+\G; A) defined by 

W)(g\> • • • > gp+i) * ƒ(&> • • • > gp+i) 

+ 2 ( " " O ' / t e i » • • • »&&+!> *-->gP+\) 

It is straightforward to verify 88 = 0. 
The cohomology groups were defined as Ker 8/Im 8 and H°9 H

l, H\ H2 

could be related to algebraically significant concepts: invariant elements, 
crossed homomorphisms, factor sets for extensions and Teichmüller cocycles. 
An excellent summary of these developments appears in Mac Lane's Retiring 
Presidential Address [39, §3]. 

2. Continuous cohomology of groups and extensions. Now for topological 
groups, one could mimic these procedures, but there turns out to be a choice 
of where to insert the topology. In the work of Heller [28], Hu [31] and van 
Est [62], it first went into the formal definition. 

For a topological group, the continuous cohomology HC(G; A) with 
coefficients in a continuous G-module A is that of the cochain groups 

Cp (G; A) = {continuous/: Gp -* A } 
with the above coboundary. Here A itself has a topology (e.g. A = R, the real 
numbers) and the action AX G-*A is assumed continuous, (e.g. A = 
C°°(G)). 

H° and Hx behave entirely as expected, but for H2 life becomes more 
interesting. Abstract group extensions are always split as sets, in contrast to 
the topological case. Hu in 1951 [31] (and independently Heller) showed that 
H?(G; A) classified topologically split group extensions, i.e. short exact 
sequences 
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such that, as a space, E is A X G. Thus if we write elements of E as pairs 
(a,g), a continuous two-cocycle ƒ: G X G-^A determines a continuous 
multiplication by 

(**)(^«0-((«-«0<f(ft«0,œ'). 
More generally, one can consider locally split extensions; that is, as spaces, 

£ - * G is a principal ^4-bundle [28]. Indeed for finite dimensional locally 
compact separable, metric groups, any extension with A closed in E is locally 
split [47]. 

Dennis Johnson and Graeme Segal [53] showed independently that in 
general Sxt(G; A), the set of equivalence classes of extensions 

I^A->E-*G->1 
which are principal A -bundles, is described by an exact sequence 

H? (G; A) -> Sxt(G; A) -» Hl (G; A), 

the last group being the Cech cohomology of the space G with coefficients in 
the sheaf of continuous functions of G with values in A. Segal mentioned in a 
letter (1970) that the image in Hl is primitive and the sequence extends: 

#c
2(G; A) -> gxt(G; A) -* Prim Hl (G; A) -» Hc

3(G; A). 

A class w is primitive if, under the multiplication m: G X G -» G, the class w 
pulls back to u X 1 + 1 X u in H\G X G; A). Such a class determines a 
bundle E which admits a multiplication; the image in H* is the obstruction to 
associativity. (A curiously similar result is known for extensions of //-spaces 
[57].) 

Using different techniques, both Johnson and Segal obtain the above exact 
sequence as a corollary of a spectral sequence. For Johnson, the starting point 
is a bicomplex combining the Cech and Eilenberg-Mac Lane coboundaries. 
This approach has been rediscovered by Jean-Louis Cathelineau [12]. 

As one might hope, given a topological group G and a closed normal 
subgroup H, there is usually a continuous version of the Hochschild-Serre 
spectral sequence from HC(G/H; HC(H; A)) to HC(G; A) [61], [29], [13], [4], 
although even for Lie groups there are real subtleties if A is infinite dimen
sional. 

3. Long extensions and continuous homological algebra. In the discrete case, 
although H2(G; A) is related nicely to extensions l-*A-*E^>G-+l9 the 
higher cohomology groups Hn(G; A) are more readily interpreted in terms of 
long exact sequences 

0->A -*EX~* >£„ -»Z->0 

of G-modules. The same holds true in the topological case, with some 
restriction on the kinds of exact sequences considered. 

Let Mg denote the category of topological G-modules. Let 9H denote a 
distinguished class of short exact sequences to be called proper (rel 91L). 
Define a long exact sequence 

0^EQXEX^ >EH^En+x-*Q (*) 
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to be proper (rel (DH) if it can be decomposed as a splicing of proper short 
exact sequences. Equivalence classes are defined in terms of the generating 
relation: two proper sequences {Et} and {/>,} as in (*) are equivalent if 
DQ = D0 and En+{ = £>„+, and there is a commutative diagram 

0 -> E0 -> Ex - • » En -» En+X -» 0 

II 1 I II 
0 -> D0 -> Dt -+ > Dn -» />„+, -* 0 

DEFINITION. Extg^C; A) will denote the set of equivalence classes of proper 
(rel 91L) sequences (*) with A = E0 and C = !?„+,. (In fact, Ext^C; A) can 
be given the structure of an abelian group in the usual way [38] by consider
ing the Baer sum of extensions.) 

As in our discussion of 7/c
2, the appropriate class 9IL is S, the class of 

p 
topologically split short exact sequences, i.e. 0-*.4-»J9-»C-»0is proper if 
and only if p has a continuous section o: C-» B. The situation is quite 
categorical; the section permits the classical (discrete) proofs to be followed 
almost verbatim. 

The main result is: 
For any topological group G and topological G-module A, we have a 

natural isomorphism 
Hc

n(G;A)^Extl(Z;A). 

This is explicit in Heller [28] for n = 2 and implied in general in both Heller 
and Wigner [66]. 

By restricting the groups involved, the class 91L can be expanded. For 
p 

example consider the class 0 of short exact sequences 0-»v4-»2?->C-»0in 
which p is open. 

THEOREM [66]. If G is locally compact, o-compact then 

Hc
n(G;A)&Extn

e(Z;A) 

provided (l) G is also ^-dimensional or (2) G is finite dimensional and A is% as a 
group, a vector space. 

A closely related description of the cohomology of abstract groups is in 
terms of "resolutions". Our definition of HC(G; A) uses essentially a specific 
resolution of Z by free G-modules. Alternatively the same answer can be 
obtained in many cases by resolving the coefficients A. This approach was 
carried out by Hochschild and Mostow [29], following the discrete model 
quite neatly. Again one works with the class § of topologically split short 
exact sequences of G-modules and uses the machinery of relative homological 
algebra, e.g. a module is §-injective if it is injective with respect to exact 
sequences proper rel § and a resolution is a proper rel § exact sequence. The 
expected result is: 

THEOREM [29]. If G is a topological group and A is a topological G-module, 
then HC(G; A) is isomorphic to the cohomology of the invariant subcomplex 
0 -» A G -» XQ -» Xx -* • • • of any § -injective resolution of A. {Equivalentfyy 

HC(G; A) is the relative derived functor of the submodule A G.) 
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This approach remembers the topology enough to give HC(G; A) the 
structure of a topological G-module, at least if G is locally compact. A 
particularly neat summary is given by Casselman and Wigner [13]. 

4. Borel cohomology. The above discussion emphasizes the relevance of Hc 

to topologically split extensions. For locally compact groups an alternate 
construction called Borel cohomology #Borcl (G; A) is more widely relevant. 

As initiated by Mackey and fully defined by C. C. Moore [43], the 
definition is that of Hc in §2 except that the functions 

f.G^A 
arc only required to be Borel (measurable) with respect to the a-field of open 
sets, that is, the collection of sets generated by countable intersections of 
open sets. 

THEOREM (MACKEY [37]). If G and A are locally compact, then 

H£OTCl(G;A)^Ext(G;A), 

the group of equivalence classes of all topological group extensions. 

The point is that topological group extensions of locally compact groups 
are Borel split. [L. G. Brown [10] has extended these results to polonais 
groups.] 

Wigner looks at extensions proper rel 0, the class of short exact sequences 
in which/? is open. 

THEOREM [66]. If G is Hausdorff and all topological G-modules are complete 
metrizable, then 

H£OTel(G;A)&Exte(Z,A). 

For Borel cohomology, C. C. Moore [43, III] has developed a short set of 
axioms wich characterize the cohomology functor for a reasonable category 
of groups and modules. A topological group is polonais if and only if it admits 
a separable complete metric. Associated to any topological G-module A, we 
have 1(A), the G-module of equivalence classes of Borel functions G-*A 
(two are equivalent if they agree almost everywhere), which will play the role 
of the regular representation. 

DEFINITION [43, III, p. 16]. A cohomological functor on a category 911(G) of 
G-modules is a sequence Hn(G; A) of covariant functors from 9H(G) to 
abelian groups such that 

(1) for all 0-> A' -» A -> A" -> 0 in 911(G) there is a natural transforma
tion 3: Hn(G; A") -» Hn+\G; A') such that the usual long exact cohomology 
sequence holds 

(2) H °(G; A) = AG, the G-fixed points of A, 
(3) Hn(G; 1(A)) = 0 for all r > 1 and alM. 
For separable locally compact groups G, Moore proves HBore[ is the unique 

cohomology functor on P(G), the category of polonais G-modules. The 
vanishing condition of axiom (3) permits systematic application of many of 
the standard techniques of homological algebra. 
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In relation to classifying spaces, we will see later that both H^^ and Hc 

are relevant, depending on the coefficient module. 

5. Cohomology erf Lie algebras. As for computing HC(G; A)9 the greatest 
success is for Lie groups. Just as the singular cohomology of a space is often 
computable because it agrees with a finite version (simplicial or cellular), so 
the continuous cohomology of a Lie group is often computable because it 
agrees with the cohomology of a corresponding (finite dimensional) Lie 
algebra pair. 

As usual, there is a variety of definitions of Lie algebra cohomology. We 
choose to define it in terms of a specific complex, emphasizing the similarity 
with our definition of continuous cohomology. 

Let g be a Lie algebra over a field k and g « Hom (G, k) its vector space 
dual. Let A*g * ©A*g be the exterior algebra generated by g. Equivalently 
A*g« Alt*(g; A:), the space of alternating multilinear forms of q variables, 
for finite dimensional g. 

Now let A be a module over the Lie algebra g; that is, A is a vector space 
over k with a representation Q: g-*End (A) such that Q[X9 7] = 
Q(X)Q(Y) - Q(Y)Q(X). In particular if A is a G-module, ir: G-*GL(A)9 

it is also a g-module by chr: g -* gl(A). 
The cochain group Cq(g; A) is Alt*(g; A) which for finite dimensional g 

can be identified with Aq(g) ® A. Define 

ô:C«(g;A)-+C«+l(8;A) 
by 

(Sw)(X^...9Xq)^^(^l)i+Jw([Xi9X/]9...Ji9...9X/>...) 

+ 2(-l)iXiw(Xl,...,Xi,...9Xq). 

After verifying that 88 * 0, let H (g; A) be the resulting cohomology: 

H{8'A) ImôC-'UM)' 
For a pair of Lie algebras h c g, define the relative cochain groups 

Cq(g9 h; A) to consist of those cochains w E Cq(g; A) such that 
(1) w(Xl9..., Xq) * 0 if some Xt e h9 

(2) w(Xl9..., [Xi9 Y]9..., Xq) = Y • w(Xl9 ...9Xq) 
it Y Eh. 

The above coboundary 8 respects these conditions and the relative 
cohomology is denoted Hq{g9 h; A). 

Among other important relations, van Est (1953) [62] establishes: 
If G is a connected Lie group with K c G a, maximal compact subgroup, 

and if k c g are the corresponding Lie algebras, then for A9 a vector space 
over R9 we have 

Hc(G;A)^H(g9k;A). 

Actually van Est used smooth cochains. Part of the point of the work of 
Mostow [48] and Hochschild and Mostow [29] was to generalize this result to 
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continuous cochains and more general coefficients, e.g. locally convex inte-
grable differential A. On the other hand, Chevalley and Eilenberg [15] 
formalized results of E. Cartan relating Lie algebra cohomology to the 
topological spaces: If K c G are connected Lie groups with G compact and 
Lie algebras fccg, then 

H(g,k;A)œH(G/K;A). 

If G and K are not connected, one has to introduce the slight modification 
denoted H(g9 K; A) defined by replacing (2) above by 

(2') w is invariant under the action of K. 
If G is not compact we need to assume there is at least some "compact 

form" Gu, that is a compact connected Lie group having the same Lie algebra, 
at least after complexification. The notation Gu reflects the fact that Gu can 
best be described in terms of unitary representations. The compact form need 
not be of the same homotopy type. For G = GL(n, R), a compact form Gu is 
U(n). 

With these modifications combined with the van Est result, we have for a 
finite dimensional Lie group G: 

HC(G;R)^H(GU/K;R) 

where K is maximal compact in G. For example 

Hc(GL(n, R);R)& A(hu h3,..., h<n>) » H(U(n)/0(n); R) 

where degree ht is 2/ - 1 and <«> is the largest odd integer < n. In contrast 
HC(K) = Hc(0(n)) = R since K= 0(n) is already compact. 

Over a/>-adic field instead of R, the results are startlingly different. Lazard 
[34] has shown that over Qp, the/?-adic rationals, for G the rational points of a 
connected semisimple group 

Hc(G;Qp)™H*(g;Qp). 

The result has been extended further by Casselman and Wigner [13]. 
Outside of the case of Lie (including discrete) groups, I know of only one 

other class of groups for which we have computations of the algebra HC(G): 
for profinite groups G9 Serre [54] shows that with discrete coefficients A, 

HC(G;A)& ind lim H(G/U;AU) 

when U runs over all distinguished open subgroups of G. (Special cases of 
H?(G; A) have been computed, e.g. [43] for compact groups as limits of Lie 
groups.) Perhaps the time is ripe for progress with this problem. 

6. Classifying spaces. Now let us look again at how the cohomology of 
groups got started. The space E/G was built from a set of simplices indexed 
by tuples from G so, if G has a topology, we can introduce it into the index 
set. That is, we define [42], [16], [41], [56]. 

BG = JL A" X G7~ 

where the equivalence relation is embodied in the (co)boundary formula and 
the pictures of §1. To be precise, 
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/o—O 

^ V*0> • • • » */> • • • 9 8i8i+\9 • • • > gp) 

^ V09 • • • 9 tp-\9 g\9 . . . , § > - l ) . 

It is worth noting that the equivalence relation is well defined because of the 
associativity. 

If G = S1, then BG is CP(oo), quite an appropriate generalization of 
<?= Z/2 and I K r - i t f (00). 

Obviously BG incorporates in its topology both the topology and algebra of 
G. One reflection of this is that G has the homotopy type of the space of 
loops QBG on BG [16]. Thus H(BG; A) is an appropriate cohomology of the 
topological group G. Until further notice, we will use A — R and drop it from 
the notation. 

Notice that whereas H(GÔ) = H(BG8) in the discrete case, we have, with 
real coefficients, Hc(S

l) = 0 (since Sl = Sj and is its own maximal com
pact subgroup) while H(BSl) = H(CP(00)) = R[u] where u has dimension 
2. 

How then are HC(G) and H(BG) related? And how is either related to 
Htop(G), the cohomology of the underlying space? The latter question can be 
answered by looking at how BG is built up from pieces An X Gn (as CP(oo) 
is built as a union of even dimensional cells: * u e2 u e4 U • * • ). The 
computations can be summarized for coefficients R (or any field) more 
readily in terms of homology. The multiplication on G induces the structure 
of an algebra on H£P(G); the homology of that algebra can then be 
considered. There is a special sequence [56], [45] going from 

H*(H»P(G))
 d= Tor H?»(G) to HJ(BG). 

For example, again with real coefficients, the homology algebra of any finite 
dimensional Lie group is an exterior algebra on odd dimensional generators 
A(xl9..., xn) and H^H^(G) = H*(BG\ dual to the cohomology algebra 

dim >>, = dim*, + 1. 

We return to cohomology to consider Hc since there is no good continuous 
homology theory at present. For real coefficients, there is a nice map 

H*(BG; R)-> H?(G; R). 

From the description of BG as the quotient of ALAP X Gp
9 there are certain 

obvious singular simplices of BG, i.e. 

A ( g 1 , . . . , g , ) : A ^ ^ x ( g 1 , . . . , ^ ) ^ A ^ X G ^ i ? G . 

Given a singular cochain u: C+(BG)-^A, the restriction to A(g1 ? . . . ,gp) 
induces a function 

u o A: Gp -» A 

and the topological coboundary corresponds precisely to the group theoretic 
one if we use C*(BG; A) where A is the locally constant sheaf (local 
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coefficient system) corresponding to the v^BG) = G-module structure on A. 
In general u ° A will be continuous, so we restrict attention to the subcomplex 
C*(BG; A) of cochains u which are continuous in terms of the compact-open 
topology for (2?G)A\ We then have 

H(BG; A) <- HC(BG; A) -» HC(G; A) 

where the right-hand map is induced by«->M°A. 
If G has the homotopy type of a CW-complex and A = R with the trivial 

action, then the left-hand map is an isomorphsm according to Mostow [49]. 
(An earlier result like this, recorded by Hu [30], works for compact Hausdorff 
spaces and Alexander-Spanier cohomology.) 

For discrete coefficients, Borel cohomology works better. 

THEOREM (WIGNER, [66]). For A discrete and G finite dimensional locally 
compact, o-compact 

H(BG;A)^HBoTel(G;A). 

Now for Lie groups and real coefficients, the identification of HC(G) with 
H(GU/K) allows us to relate HC(G) and H(BG) via the spectral sequence of 
the fibration 

GJK^BK->BGU 

where K being maximal in G implies BK « BG. Essentially the same relation
ship can be obtained more intrinscially from the construction of BG, as was 
done by Bott: 

For a Lie group G9 there is a spectral sequence from 

H?(G;S*(g)) to H*(BG) 

where S denotes the symmetric algebra and g the dual of the Lie algebra. The 
idea is simple enough. The de Rham version [9], [17], [65] of an old singular 
result [56] asserts H(BG) is given by the double complex 

2*((?*) = e s w ) 
of ç-forms on the /7-fold products. G being a group, so is Gp and hence we 
can identify 

Q?(GP) = C°°(Gp;Aq(gp)) 

where A* denotes the qui exterior power and gp the dual of the Lie algebra 
of Gp. The usual approximation of smooth by continuous functions then gives 
the homology for fixed q as HC(G; H(Aq(gp))). Standard homological 
algebra gives the homology coefficients as Sq(g). The edge map H(BG)-+ 
HC(G) is the map induced by u -» u ° A above. 

For a reductive Lie group, we can further identify Ex as 

Hc{G)®S*{gf 

the latter factor denoted classically as 7C, the invariant polynomials. 
Working entirely from the Lie algebra point of view, Kamber and Tondeur 

[32] had earlier produced a formally isomorphic spectral sequence with 
Ex « H*(g, K) ® S*(gf. Using their techniques, I have been able to show 
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the two spectral sequences are naturally isomorphic with the Ex isomorphism 
being the van Est result. Their techniques also permit the natural identi
fication of these spectral sequences with the Leray-Serre spectral sequence of 
the fibration 

GJK^>BK^>BGU. 

The advantage of Bott's approach is that it works for a not necessarily 
reductive Lie group. 

Consider for example G * GL(n, R). We have already stated HC(G), and 
IG is known to be R [cl9..., cn] where c, is of dimension 2/ [23]. In this case 
we also know H(BG) « R[c2, c 4 , . . . , c^n/2]] and hence conclude, up to a 
change of basis, dJA, * ct for i odd. Portraying this in terms of generators 
only, we have: 

7. Continuous cohomology of topological groupoids. Now all of this would be 
history, mostly ancient, were it not for new, powerful and applicable generali
zations. Lie was not interested in groups alone. Because of the relevance to 
partial differential equations, Lie was interested in smooth transformations of 
one parameterized space to another. In modern terminology, a suitable 
setting is that of local diffeomorphisms of a manifold; it is sufficient to 
consider R". Since two such transformations cannot always be composed (we 
need the range of one to be within the domain of the next) we have not a 
group but a pseudogroup. From the point of view of differential equations, it 
is the infinitesimal behaviour that is paramount, so we pass to equivalence 
classes where two transformations on neighborhoods of x are equivalent if 
they agree on some smaller neighborhood. The equivalence classes are called 
germs. The collection of equivalence classes now form a groupoid (each germ 
has an inverse) called Tn. It inherits a topology from the original manifold, 
R"; indeed TH is locally diffeomorphic to Rn though not paracompact or even 
Hausdorff. When defined, composition is still associative and continuous, and 
since local diffeomorphisms have continuously varying local inverses, r„ is a 
topological groupoid. 

[In what follows, we limit ourselves to groupoids because of their intrinsic 
interest, although the inverses play no significant role and the formal 
definitions go through for topological pseudogroups.] 

For topological groupoids T, the above definitions of Hc and B make sense 
if we make just one modification. Instead of Gp

9 we use r °° c T* where 
(Yi>... , T>) E Tip) iff y, o • • • ° yp is defined. Now H*(T; A) is defined as 
the cohomology of the cochain group 
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C* (T;A)= {continuous/: r̂ > -> A } 

with respect to the coboundary we've been using. To generalize to coefficients 
in a continuous T module A, we define the latter to mean the following: Let 
F® denote the space of right identities or sources of T and require A to come 
equipped with an onto map TT: A -» T*® and a map A Xps» T ~» A satisfying 
the associativity condition. For example, let T = (germs of local diffeomor-
phisms of a manifold M} and A = T*M, the cotangent bundle, with tr\ 
A-+F® = M the standard projection. Now restrict 

C* (T; A) - {continuous/: I^> -> A\*f - i d j 

so that the last term of 8 makes sense: f(yl9..., yp) • y ^ is defined. 
Similarly BT is defined as a quotient of Ap X f00 by the same relation as 

for BG. Now BTn turns out to be relevant to the classification of foliations of 
manifolds. A foliation can be defined as a decomposition of a manifold M 
into manifolds La of codimension n such that locally the decomposition is 
equivalent to that of Rm by coordinate planes of codimension n. A crucial 
example is provided by solution sets of differential equations. 

The cohomology H(BTn) then gives rise to characteristic classes for such 
foliations. 

Here we must distinguish between the de Rham cohomology H and the 
singular cohomology %. Although neither Hausdorff nor paracompact, T*p is 
locally diffeomorphic to Rn and hence has a tangent bundle and Q*(Fn

p)) is 
defined. Since the de Rham theorem is unknown for r„ we can make no 
comparison with %(BTn) but the cohomology of Q*^**) is isomorphic to 
H(BT„). Although the map into %(BTn) is not known to be an isomorphism, 
it does give characteristic classes. On the other hand for any manifold M 
mapped into BTn9 the de Rham theorem for M guarantees that the kernel of 
#(Q*(r<*>)) -» %(BTn) is mapped to zero in H (M) « %(M). 

Bott's analysis of Q*(G*) carries over to Q Î*"0) with one important 
modification, as Shulman and I worked out [55]. Notice that since the tangent 
bundle to J*p is induced from that of Rn

9 it trivializes and 

Q*(rO») « C°°(r^>; A*(1T)). 

Since the exterior powers of Rn alone and not iterated products occur, the 
symmetric algebra does not appear. Indeed 

Ef«wH*(T;A*(RH)). 

Since this talk was given, this group has been computed in part; we return to 
it shortly. 

Now there is a very nice map Tn -* GL(n, R) = G given by taking the 
differential at the source. This respects composition; we have induced maps 
BTn^BG and Q*(G*) -» Q * ^ ) . The vanishing of Q*(T<>>) f or q > n 
together with the spectral sequence information above gives the Bott vanish
ing theorem: R [ c 2 , . . . , c^n/2]] -» H*(BTn) is zero in degrees greater than 2/t. 

It is rather tempting to consider the factorization 

Q*(G*) -> Q*(G*)//fonns of dcg>„ -> Q*(r<*>) 
and to compute the cohomology of the middle term, call it B. Look at 
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^g(B)=iE^(G), q<n, 
q > n. 

The differentials are otherwise the same as in Ex(Sl*G*) and the results can be 
compared. A worthwhile summary is given by considering 

WOn = A(A1, h39..., h<n>) ® R[cl9..., c„]/ t o t a ldeg>2 / l with dht « ci9 i odd, 

then we can show H(WOn) « H(B)9 so we have 

H(BGL(n, R))-* H(WOn) -> H(BTn). 

Until recently, the cohomology of BTn was studied by constructing specific 
foliations with nontrivial characteristic classes. The first detected and most 
famous is hxcX9 called the Godbillon-Vey class [22], [58]. Its direct description 
in terms of de Rham forms enables it to be computed and shown to be 
nontrivial for a foliation on the unit tangent sphere bundle to a compact Mn 

of constant negative curvature. To identify other classes, Vey [21] has given a 
basis for H(WO„) (all products are zero) consisting of all the classes 
hi hi • • • ht ® Cj • • • cjs such that ix < i2 < • • • and jx < j 2 < • • • and 
further ix + 2 ^ > n while ix < j x . Denote such a class as hjCj with I = 
( / „ . . . ) , / = (ƒ,>•••)• By m o r e homotopy theoretic methods, Thurston [58] 
has shown c2 is nonzero in H4(BTn)9 n > 1. By subtle improvements of 
standard techniques, Morita [46] then showed the independence of classes 
hxc

r
xc{ for r + 2s = n9 r > 0 in H2n+l(BTn). Meanwhile Kamber and 

Tondeur [33] and more recently Baker [1] were able to show large numbers of 
the hjCj were linearly independent. The essential geometric technique is the 
construction of foliations induced from right #-coset foliations on a Lie 
group G by passing to the quotient r \ G f or T a suitable discrete subgroup 
acting on the left. Indeed Roussarie's example for the Godbillon-Vey class is 
of this form. 

Finally John Petro has just shown the map H(WOn)-*%(BTn) is a 
monomorphism. His proof uses an analogous spectral sequence for T009 the 
germs of local diffeomorphisms with source and target at the origin (topolo-
gized as a quotient of Tn). A comparison of //c(r00) with Hc(Jn) where Jn is 
the space of infinite jets (at the origin) of local Cr-diffeomorphisms of Rn 

yields a monomorphism H*(WOn) -* %*(BT00) which in turn is isomorphic 
to %*(BTn). 

Meanwhile Fuks [69] has announced the injectivity of H(WOn) -» %(BTn) 
and related maps, using rather different methods. 

There is one further aspect of these classes where our knowledge is 
incomplete. Some of these classes, that of Godbillon-Vey for example, can 
and do vary continuously. That is, there is a continuous family of foliations Ft 

on a manifold M of dimension 2n + 1 such that the corresponding Godbil
lon-Vey classes hxcx for Ft9 when evaluated on the fundamental cycle of Af, 
run over all real values. Of course the family does not form an integrable 
homotopy for then the value would have to be constant. In terms of maps, we 
have M -^ BTn lifting to a map M X I -> BTn+x, but not to M X I -* BTn. 
The classes in BTn which pull back from BTn+x cannot vary and are 
therefore called rigid; the ones which can vary continuously are not in the 
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image. In terms of the Vey basis, the latter are precisely those hjCj with 
i\ + *2jk * n + 1. In the Bott spectral sequence, they occur in E\* with 
nontrivial differential dr such that q + r = n + \. Thus they are cycles if we 
truncate above n, but not if we truncate above n + 1. 

All of these special hjCj then are potentially capable of varying 
continuously, but we have only limited knowledge of which do and even less 
as to how independently the various classes can vary. The most extensive 
result I am aware of is due to Heitsch [27]. He shows the classes in 
H4k~l(W02k-\) can vary over a range of values at least as big as Rk. [See 
also [51].] 

ADDED IN PROOF. Fuks [69] has announced that in the case of foliations 
with trivial normal bundle all the potentially variable hjCj do vary. 

8. Continuous cohomology of vector fields. In addition to germs of local 
dif f eomorphisms, the group Dif f M of all dif f eomorphisms of a manifold M is 
of great interest. Motivated by van Est's result, one might look for a suitable 
Lie algebra for Dif f Af. Gel'fand and Fuks in a series of remarkable papers 
[19], [20] turned their attention to the Lie algebra %(M) of vector fields on 
Af. Excellent surveys of their work, particularly in relation to foliations, are 
provided by Bernsteïn and Rosenfel'd [3] and by Bott [50]. We will comment 
on their work only in relation to the preceding sections here. 

Since %{M) is itself infinite dimensional, continuity is not necessarily a 
consequence of linearity, so Gel'fand and Fuks consider the complex 

Q (%(M); A) * Alt?(9C(M); A) 

of alternating multilinear maps continuous with respect to the topology. The 
coboundary is as in §5. Denote the cohomology by Hc. They also consider the 
space of formal vector fields An on RH: vector fields of the form 
2ƒ?,(*!,. • . , *„) d/dXj wherept is a formal power scries. An alternate nota
tion is 

&n « R[[xl9 . . . , * „ ] ] ® <9/3x„ . • . , d/dxH} 

where < ) denotes the vector space spanned. There is an explicit and 
canonical map 

WO„^CH&H;R) 
which they show induces an isomorphism in cohomology. Thus we have a 
factorization H(BG) -» Hc(An) -* H(BTH)9 which can be interpreted directly 
on the cochain level in terms of the associated infinite jet bundle [18]. 

ADDED IN PROOF. It is this map Hc(An) -» H(BTH) as well as many others 
of a similar form: Hc(q) -» H(BQ) for which Fuks [69] has outlined a proof of 
injectivity. 

9. Coda. We began with the cohomology of abstract groups. Given a 
topological group G, we can ignore the topology and consider the correspond
ing discrete group Ga. For G = GL(n, R) we have 

BG*-+BTH^>BG. 

Notice that the continuous cohomology HC(G9) is the abstract group 
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cohomology « H(BG8) so we have 

H(BGS) «- H(BTn) «- H(BG) 

I I 
HC(GS) <- Hc(Tn) <- HC(G) 

where the vertical maps can be interpreted as the edge morphisms of the Bott 
spectral sequence. The composite HC(G) -» Hc(G

d) is known to be a mono-
morphism (by results of Borel and Selberg showing the existence of enough 
discrete subgroups of G to detect all the continuous cohomology [4]). In 
general HC(G) is intermediate between H(BG) and H(BG6). 

Finally we can think of BGÔ
9 BG as being the same space with two 

topologies (see §6). Bott and Haefliger consider a new cohomology using both 
topologies and denoted %C(BGS <-» BG). It is defined in terms of the singular 
simplices of BGà by considering cochains which are continuous with respect 
to the 2?<7-induced topology on the space of singular simplices in BGÔ [49], cf. 
[67]. (With just one topology and reasonably nice spaces [30], this reduces to 
ordinary singular cohomology.) They prove 

HC(G) « %C(BG*~> BG). 

M. Mostow has since thoroughly studied this notion, both axiomatically and 
through illustrative examples, and clarified its relation to foliations [49]. 

Thus continuous group theoretic cohomology HC(G) is intimately and 
intricately related in various ways to the cohomology of the classifying space 
BG. 

It is interesting to compare H*(BG; Z) and H*(BG\ R) via Borel and 
continuous cohomology. 

H*~l(BG;R/Z)-> H*(BG;Z)~* H*(BG; R) 

I * 
« HC(G;R) 

HèôÀ(G;R/Z)^ HBoTel(G;Z)^HBotel(G;R) 

For a compact Lie group G, HC(G; R) * 0 so the machinery of functional 
cohomology operations can be applied to (the real image of) any integral 
cohomology class w, for example Chern classes in H*(BU(n); R). The result 
is the Simons-Cheegar character of u [14]. Explicit formulas in terms of 
integration of forms are given also by Baker [2]. For a compact Lie group G9 

the differential characters correspond precisely to HBorel(G; R/Z). 
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