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z'(')n/(*,*(O)*0. 
where z is a linear operator on a complex Hubert space. If Q is the Siegel disk 
z*z < 1, the tangent condition is often needed only on the Silov boundary; 
this remark greatly increases the scope of the results. The special case 

a(t) + b(t)z(t) + z(t)d{t) + z{i)c{i)z{t) E z\t) 
applies to equations of multiple transmission lines and transport processes, 
and also yields results on pure operator equations (no derivatives). For 
example, if b ^ 0 and dî^O, then one of the functions 

f(z) = a + bz{\ - cz)~ld9 g{z) = c + dz{\ - az)~xb 

maps the Siegel disk into itself if, and only if, the other one does. Further 
study of operator differential equations gives results on oscillatory properties 
of (pzj + qz = 0 which parallel those in the classical case. Extension to 
higher-order equations involves a far-reaching generalization of the notion of 
"adjoint" where, instead of an adjoint operator, one has an adjoint subspace. 
Among contributors to these developments are Ambartzumian, Preisendorfer, 
Reid, Bellman, Kalaba, Wing, Ueno, Chandrasekhar, A. Wang, Zakhar-Itkin, 
J. Levin, Paszkowski, Shumitzky, Helton, Krein and Shmul'yan, Etgen and 
Lewis, and Coddington and Dijksma. 
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The typical first graduate course in ordinary differential equations begins 
with a discussion of the initial-value or Cauchy problem. Under a variety of 
assumptions, it is shown that this problem has a solution, that it is unique, 
and that it depends nicely on the data. Thus, under mild restrictions, Cauchy 
problems in classical ordinary differential equations are well posed. As the 
course progresses and more special topics are pursued, these preliminary 
results begin to seem rather simple and, in a short time, are taken for granted 
by the serious student. Nevertheless, one is always thinking in terms of them. 
Scientists and engineers often think the same way: a system being modeled 
has a state u which changes in time according to a differential (or evolution) 
equation 

(EE) du/dt = A{u) 

which summarizes the dynamics of the system. In classical mechanics and 
many other fields the state is a list of numbers (giving, e.g., velocities and 
positions of bodies or populations of species or quantities of reactants, etc.,) 
and (EE) is a classical ordinary differential equation, where "classical 
ordinary differential equation" means roughly that A continuously maps an 
open subset of some R^ into R*. One specifies an initial condition 

(IC) u(0) - u0 
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and studies the Cauchy problem (EE), (IC) to obtain information about the 
state at later times / > 0. The preliminary results about Cauchy problems 
mentioned above establish that most of the special cases of (EE), (IC) arising 
in these applications are well posed; however, they do not assist much with 
the task of making predictions from a given model. 

In other applications one must deal with systems whose "states" are not 
lists of numbers but are instead lists of functions on a subset of some R^ (e.g., 
the velocity field in a fluid or the temperature distribution in a rod). The 
dynamics may still be summarized by an equation of the form (EE); but 
typically u now has values in some function space, and A itself is a nonlinear 
differential operator (or worse) subject to side or boundary conditions. The 
appealing geometrical interpretation of solutions of (EE) available in the 
classical case and the polygonal approximation (or explicit difference) 
method suggested by it are, in the beginning, lost to us because the A's which 
appear have tiny domains and are badly discontinuous. The question of 
well-posedness becomes interesting again because it is much less intuitive that 
something of this sort is true. In fact, in some examples it is no longer clear 
what (EE) should mean; indeed, the very problem of finding an appropriate 
notion of solution is quite fascinating. It is not possible that there be one 
universal theory for (EE), (IC) which is applicable to every model occurring 
in applications. However, there is an abstract framework simple enough and 
basic enough to make nontrivial assertions about a spectrum of problems 
ranging from topics in classical ordinary differential equations to problems 
involving the heat equation, the wave equation, the Schrödinger equation, the 
equation of flow in a porous medium, a single conservation law, equations of 
Hamilton-Jacobi type, the Carleman model of two particle collinear 
scattering, the Stefan problem, nonlinear diffusion, variational and quasi-
variational inequalities of evolution and many others already known or yet to 
be discovered. This framework is the core subject of Barbu's book. 

To be more precise requires some notation. Let X be a Banach space with 
norm denoted by || ||, and let A: D(A) C I ^ I Everywhere below ƒ: 
[0, T] -* X is a strongly (or Bochner) integrable function. Choosing u0E X 
we consider the Cauchy problem 

CP(AJ,u0): 
1"(0) = % 

defined by A, f and u0. Here "ƒ(/)" corresponds to adding a known source or 
forcing term to (EE); this is a useful generality, both because of the interpre
tation of ƒ as a source term in models and because adequate knowledge of the 
way the solution of CP(A,f, u0) depends on ƒ can be used to study pertur
bation problems. (Indeed, the "variation of parameters" formula 

u{t) = (exp tA)u0 + f (exp(f - s)A)f(s) ds 

for the solution of CP(A,f, u0) in the classical linear case finds its most 
striking applications in perturbation studies.) 

The basic method of "solving" CP(A,f, u0) in our setting is via approxi-
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mation by implicit difference schemes. For the purposes of this review, an 
e-approximation to CP(A9f9 UQ) on [0, T] by an implicit difference scheme is 
defined by a partition 0 » t0 < * , < • • • < /„ of [0, /J, a finite sequence 
{ &} /-1 £ A" and a n x 0 6 l satisfying 

(i) 0 < T - tn < 6, / l+ l ~ /, < e for i = 1 , . . . , w, 

(ü) 2 ƒ * ||/(T) - ft| * < 6, 
(iii) | |X0-t l0 | |<6. (1) 

A solution of the difference approximation defined by {0 * t0 < /, < t2 

< . . . < tn}9 {g/}7«i, and x0 is a piecewise constant function t?: [0, tH]-*X 
such that Ü(T) = v(tg) for T E (tt^l9 /J and 

(i) t>(0) = Xo, 

(H) Vl; V' - ^(t;(0) + &; i - 1 , . . . , if. (2) 

One has: 

THEOREM. Assume there isanwER such that 

|* - * - X(^(x) - i l (*) ) | > (1 - A»)|x - * | 

for x9x ED{A)9and\> 0. (3) 

£e/ «o G D(A)9 T > 0 a/tt/ vk be a solution of an ek-approximation to 
CP(A9f9 u0) on [0, T] fey a/i implicit difference scheme for k = 1, 2, 7f 
lim*.^ eft = 0, then there is exactly one continuous function u: [0, T] -» X such 
that lim^^oo||^(/) - w(/)|| = 0 uniformly on compact subsets of[Q9 T). 

Assumption (3) is the only restriction on A9 replacing the Lipschitz 
continuity and/or compactness one is accustomed to. Here are some simple 
examples for orientation: If A is Lipschitz continuous with constant L, then 
co ~ L works; if X * R and A is nonincreasing, then co * 0 works; if AT is a 
Hubert space and A is linear, perhaps unbounded, selfadjoint and A < 0, or 
A is skew-adjoint, then <o * 0 works. If (3) holds one says A — wl is 
dissipative or, equivalently, —A + <o/ is accretive. Some differential operators 
and spaces in which they have dissipative realizations are: (a) A(u) * Aw in 
Lp

9 1 < p < oo; (b) A(u) - A(w"), a > 0, in L> and H~l; (c) ^(w) * 
2"-i(»(«))« m L1; (d) ^(«) = (At/)«, a > 0, in L00; (e) A(u) = 
27 .1 (9 /9^X1^/3^" W 9 ^ ) for ? > 1 in Z/, 1 < /> < oo; (f) ^(M) -
g(grad u) in L00. 

Assuming that the hypotheses of the above theorem are satisfied, we denote 
the limiting function u whose existence is asserted by the theorem by 
K(A9f91/0). Now one simply defines u = K(A9f9 u^ to be the "solution" of 
CP(A9f9u^ on [0, T] if K(A9f9u0) "exists" (i.e., the hypotheses of the 
theorem hold: in particular, (3) holds and there are solutions vk of ek-
approximate schemes with ek -» 0). The basic theory continues by discussing 
the following questions: When does K(A9f9 u0) exist? What is the relationship 
between the notion of solution MK{A9f9u^f9 of CP(A9f9u^ and more 
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classical notions which require the existence of derivatives? How does 
K(A,f, u0) vary as A, ƒ, u0 vary? Given a candidate function w, how can we 
tell if u = K(A,f, u0) or not? The answers to these questions constitute the 
fundamentals of the subject. In treating them, it is a handicap to restrict one's 
attention to functions. It turns out to be natural to let A be a "multifunction", 
i.e., to let A map X to the subsets of X. We now write Ax rather than A(x\ 
we agree that Ax is defined for every x ELX and set D(A) = { x 6 l : 
Ax ^ 0 } . Sums, scalar multiples and inverses of multif unctions are defined 
in the obvious way and functions are regarded as special cases of multi-
functions. With slight modifications, the above theorem is sensible and true 
for multif unctions A. This generality turns out to be very useful in 
applications, costs nothing in terms of analytical difficulty and is essential in 
the formulation of some remarkable results as discussed below. 

In contrast to the above implications that this subject may be regarded as 
basic ordinary differential equations for a class of applications in infinite 
dimensions, Barbu states in his preface that "The theory as developed below 
is a generalisation of the Hille-Yosida theory for one parameter semigroups of 
linear operators and is a collection of diversified results unified more or less 
loosely by their methods of approach." The book jacket adds: "The author's 
first aim is a survey of the basic methods and results on nonlinear semigroups 
theory, an approach with a strong unifying effect in the existence theory of 
nonlinear differential equations." The second statement is consistent with our 
view, the first is not. The Hille-Yosida theorem roughly corresponds to the 
special topic of linear equations in this subject just as classical ordinary 
differential equations has within it the special topic of linear equations. I feel 
it is a handicap to think of "nonlinear" as a generalization of "linear". But 
Barbu's assertion is historically accurate and this point of view is reflected in 
his presentation. It also led to the results described below. 

If R (ƒ — XA) D D (A) for À > 0 and the multifunction version of (3) holds 
with (0*0 , then every difference approximation (2) with x0 E D(A) and 
gir « 0, i * 1 , . . . , n, has a unique solution. Indeed t?(f,) is determined from 
©0#-i) by solving ©(/,.) - (/, - h^Av{t^ Bv{t(^. Thus K(A9 0, u0) exists 
for uQ E D(A). If one defines S(t)u0 • u(t) where u * K(A, 0, ti0), then it is 
shown that S(t): D(A)->D(A) for / > 0, S(t)S(r) * S(t + T) for /, r > 0, 
| |S(0* - S(t)y\\ < \\x ~y\\ for t > 0, x, y ED (A) and S(t)x -> S(0)x * 
x as / - * 0 + for x E D(A). That is, S(t) is a (strongly continuous) 
semigroup of contractions on D(A). Similarly one defines semigroups of 
contractions (all of which are assumed strongly continuous) on arbitrary sets 
C c X. If S is a semigroup of contractions on C, then its infinitesimal 
generator As is defined by Asx * ]imt_^0+t"l(S(t)x — x)9 where D(AS) is 
the set on which the limit is defined. 

Various famous theorems in linear functional analysis identify the infini
tesimal generators of special classes of semigroups. For example, the infini
tesimal generators of semigroups of unitary operators (i.e., each S(t) is 
unitary) on a Hubert space arc precisely the skew-adjoint operators (Stone's 
theorem); the infinitesimal generators of semigroups of linear contractions are 
precisely the linear densely defined operators A satisfying (3) with <o = 0 and 
R(I - \A) = X for A > 0 (Hille-Yosida theorem); if X is also a Hubert 



636 BOOK REVIEWS 

space H the Hille-Yosida conditions can be restated as: A is linear, densely 
defined and maximal with respect to extension among linear operators 
satisfying (3) with (o = 0 (Phillips' theorem). 

By contrast, we do not know any characterizations of the infinitesimal 
generators of semigroups of nonlinear contractions on a general Banach space 
X. We do know that there are semigroups of contractions with empty 
infinitesimal generators, and an outstanding open problem is whether or not 
{JC G X: ]xmti0t~

l\\S(t)x - JC|| < oo} is nonempty whenever S is a 
semigroup of contractions on X. However, when X is a Hilbert space H there 
is a sharp theorem; this states that the set of infinitesimal generators of 
semigroups of contractions on closed convex subsets of H is precisely {A0: A 
is a maximal dissipative multifunction in H}. A0 is the function which assigns 
to JC E D(A) the element of least norm in Ax. Moreover, the associated 
correspondence between maximal dissipative multifunctions and semigroups 
is biunique. Here a "dissipative" multifunction is one satisfying the multi
function version of (3) with co = 0 and "maximal" refers to ordering by 
extension. Maximal dissipative multifunctions A in H are precisely the 
dissipative multifunctions satisfying R (I — A) = H (Minty's theorem). 

Simple examples show that infinitesimal generators are very delicate; the 
mildest perturbations destroy the property of being an infinitesimal generator. 
On the other hand maximal dissipative multifunctions are quite stable. For 
this and other reasons, even in Hilbert spaces one regards the multifunction 
giving rise to a semigroup as its "generator" (rather than the infinitesimal 
generator). 

(The biunique correspondence mentioned above was suggested to me by R. 
T. Rockafellar after initial work of Y. Kömura, T. Kato, J. R. Dorroh, A. 
Pazy and myself, and was proved by Pazy and myself. Y. Kömura, who 
initiated this theory, established its most difficult link. He showed that the 
infinitesimal generator of a semigroup of contractions on closed convex 
subset C of H is densely defined in C. As mentioned before this is false in 
general spaces. The characterization of spaces in which it is true remains 
open. This theoretically fascinating problem is not of great applied signifi
cance, however: One is seldom presented with the solutions (that is, S) of a 
problem and asked for the problem (i.e., A) in nonlinear analysis.) 

Thus the subject has many facets. Interpolate anywhere between the claims 
of applied significance (problems involving the heat equation, the . . . ) and 
mathematical elegance ( . . . the correspondence between maximal dissipa
tive multifunctions and semigroups is biunique . . . ), and there is something 
interesting to be found. 

My view of this subject has evolved since the original 1974 Rumanian 
edition of Barbu's book appeared, partly due to the influence of works of J. 
Yorke and J. Kaplan, T. Takahashi, and Y. Kobayashi, which are not 
reflected in this book. The one theorem I stated above is proved in [3] and is 
not contained in the book (which presents the original special case obtained 
by myself and T. Liggett), and Barbu uses "generator" in the sense that I used 
"infinitesimal generator". A few words, then, about the book. The five 
chapters contain many topics I did not mention above. The first chapter is 
devoted to reviewing "preliminaries" (duality mappings, renorming theorems, 
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strict and uniform convexity, vector-valued distributions, Sobolev spaces, 
Hille-Yosida theorem, etc.), and the second to basic results about maximal 
monotone operators, convex functions, subdifferentials, and dissipative 
operators in Banach spaces. There is a lot of material in these two 
preparatory chapters and it occupies nearly 100 pages. Chapter III corres
ponds best to the first part of my review; and Chapter IV contains the 
generation theorem in Hilbert spaces discussed above and goes on to discuss 
other topics in Hilbert spaces including regularity results for u = 
^("* 9<P> f * "o) when <p is a convex functional, variational evolution problems, 
some nonlinear Volterra equations and other topics. Chapter V is devoted to 
a collection of topics unified by the appearance of second time derivatives. 

This is a work of impressive scope. Barbu has collected a large body of 
recent research in his book and he has done a very considerable task in 
organizing it in a coherent way. However, I feel the book has shortcomings 
from the point of view of most readers. The prospect of plowing through 100 
pages of preparations before hitting the main topic is discouraging, even if the 
material is of independent interest. The rich collection of examples is neither 
motivated nor put in perspective. Moreover, the presentation of the examples 
assumes an expertise in partial differential equations which will exclude many 
potential readers. The abstract developments can be followed independently 
of the examples, but this is a rather sterile approach to the subject. 

In view of these considerations, my advice to the potential reader of 
Barbu's book would be to first look over [2] and then [4]. A skimming of [3] 
might also be worthwhile. These papers all appeared after the book and 
should facilitate reading it as well as provide some basic information and 
perspective without 100 pages of preliminaries. A principle omission of 
Barbu's book is that there is no treatment of the continuity of K(A,f, u0) 
with respect to A. A recent source for this is [5], while other references are 
given in [2]. 

The only other book available to most readers on this subject is Brezis' 
excellent monograph [1] concerning the Hilbert space theory. (I. Miyadera 
has published a volume in Japanese.) 

Finally, there have been a variety of other developments in this area which 
are too recent to appear in Barbu's extensive bibliography and which I am 
not able to describe here. Recent work of J. B. Bâillon, Ph. Benilan, H. Brezis, 
R. Brack, L. C. Evans, A. Pazy and M. Pierre, among others, is relevant. 

I wish to thank my friends for their comments on this review. 
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