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misleading: In decomposition theory random variables and vectors figure 
only in terms of their laws, and the theory, while its origin is probabilistic, is 
purely analytical. However, those defects- at least in the eyes of the reviewer 
-are of very little importance. For the book ought to be considered as a 
classic-the best of its kind. It is well written and very instructive. 

The total impression about the state of the theory is somewhat disturbing. 
The ingenuity and power of the methods and the great wealth of results still 
leave the basic problem unsolved: Find applicable general criteria so that, 
given a law one can find all its components, and, in particular, find whether it 
is an indecomposable or an 70-law. It is hoped that the Linnik-Ostrovskiï 
book will serve as a catalyst for further search in this direction. 

The untimely death of Linnik was a great loss for mathematics and for 
those who knew him. 
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Completeness and basis properties of sets of special functions, by J. R. Higgins, 
Cambridge Tracts in Mathematics, no. 72, Cambridge Univ. Press, 
Cambridge, London, New York, Melbourne, 1977, x + 134 pp., $19.95. 

The questions considered in this book arise from our wanting to represent a 
given function as a linear combination of particularly interesting or useful 
auxiliary functions-for example, the eigenfunctions of a boundary value 
problem. In this setting the idea has been traced back to Daniel Bernoulli, 
who used the expansion as a formal device; it was Fourier who showed that 
(sometimes) the formal solution is really a solution. There are natural 
questions to ask about Fourier series (apart from their use in solving eigenval
ue problems): Does the series converge? Does it converge to the function we 
got it from? If so, is it the only series of its kind that represents that function? 
A collection of functions <pn such that every function ƒ (in a suitable class) has 
a unique expansion *2anq>n that converges (in a suitable topology) to ƒ is called 
a basis. This notion, when formulated in abstract terms, can be considered in 
any Banach space, or even in more general spaces; a given set {<p„}, regarded 
as abstract elements, may or may not form a base depending on which space 
they are taken to belong to. Thus for example the trigonometric functions 
{einx} form a basis in L2 (periodic functions of integrable square) but not in 
C (continuous functions under uniform convergence). The trigonometric 
functions also form an orthogonal set, but this is only a feature that is 
convenient for computing the coefficients in the expansion, not an essential 
part of the idea of a basis. Most of the familiar separable Banach spaces turn 
out to have bases, but we know (only since 1973) that there are separable 
Banach spaces that have no bases [5]. 

A similar idea entered mathematics in a different way and beginners 
sometimes confuse it with the idea of a basis. In abstract terms, a set {<p„} of 
elements of a Banach space is called total if every element of the space can be 
represented as the limit of a sequence of finite linear combinations of the 
<pH, i.e. as limAr^002fa(/:, N)<pk rather than as limiV^002fa(^)<p/fc. This is the 
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property expressed, for the trigonometric functions or for the powers {xH}9 

by the Weierstrass approximation theorem. On the whole, at least for appli
cations, totality seems to be a more significant notion that basicity (a term I 
have borrowed from chemistry). Something of the difference is suggested by 
the following story. In the early days of radar, people approximated functions 
by the partial sums of their Fourier series, but were bothered by persistent 
spikes on the graphs. The presence of these spikes had in fact been known to 
mathematicians for some 40 years under the name of the Gibbs phenomenon; 
it reflects the nonuniformity of the convergence, in other words, the nonba-
sicity in space C. When the radar people changed to suitable different linear 
combinations of the trigonometric functions, the difficulty disappeared; 
indeed, the trigonometric functions are total in C. 

At this point it is useful to issue a warning that although hardly anyone 
calls a basis by any other name, the term "total" has many synomyms, most 
of which have also been used as names for different concepts. Some of the 
confusion has arisen because there is a closely related concept called com
pleteness, which for a set {<pn} in Hubert space says that the zero element is the 
only element orthogonal to all the <p„; and in Hubert space, completeness is 
equivalent to totality. ("Complete" is not a really good term, since it is 
completely different from other uses of "complete", for instance in "a 
complete metric space"; but I follow tradition-and the book.) Unfortunately 
this concept of completeness can be generalized to spaces in which it is not 
equivalent to totality. The subject has consequently suffered badly from what 
I like to think of (not quite accurately) as Humpty Dumpty's principles [4] 
and Ko-Ko's law [6]: if a concept has a name, give it a different one; if a 
concept hasn't a name, give it the name of something else; if two concepts 
have the same name, they can be identified. 

The connection between completeness and totality was recognized long 
before Banach spaces had been invented, and rather naturally, because there 
are many reasons for wanting to know whether a given set is total (or 
complete): for example, to validate an algorithm for a physical problem (as 
for Fourier series); to answer a significant theoretical question (as for the 
Weierstrass approximation theorem); or to satisfy intellectual curiosity (when 
is a sequence {e~'t*»} complete?). Furthermore, although the sets of functions 
that arise from physical problems often turn out to be bases or at least total 
sets, there is always (until some sufficiently general theorem has been estab
lished) the nagging possibility that next time it might turn out differently. 
Many special sets of functions have been investigated for basicity or totality 
and many methods are available for studying them. Confronted with an 
unfamiliar set of functions, where does one go for information? There has 
been no easy answer. There are two books [7J, [8] specifically devoted to 
bases, but to bases (and their generalizations) in very abstract terms, so that 
neither book contains an appreciable number of examples of specific sets of 
functions that form bases. Moreover, since the theory of bases in abstract 
spaces has now taken on a life of its own, these books contain few theorems 
that an outsider can readily apply to a specific case. Information about 
particular bases and particular total sets can be extracted, but not very 
conveniently, from almost any book on approximation theory, from books on 
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series of orthogonal functions, and even from books on functional analysis; 
but there has been no book devoted to this subject. 

The book under review tries to fill this gap in the literature. It sets out to 
describe and illustrate some important methods for establishing the basicity 
or totality of a given set of functions. After a chapter reviewing metric spaces 
and LP spaces, the author first discusses orthogonal systems and the special 
criteria that apply to them. He establishes the completeness of many named 
sets, and also of the (as yet unnamed) set {ir~l(x — #i)""1siii TT(X — n)} that 
appears in the cardinal interpolation series (otherwise known as Shannon's 
sampling theorem), and he discusses some cases of completeness in the 
complex domain. He does not, however, mention the Franklin set, which 
recently turned out to be essential in Bockarev's construction [3] of a basis for 
the Banach space of functions analytic in a disk and continuous in the closed 
disk. 

The next chapter considers nonorthogonal systems. The author approaches 
them first through various versions of the stability principle, which states (to 
put it informally) that a sequence close to a basis is again a basis. One version 
of this principle was discovered, and exploited rather spectacularly, by Paley 
and Wiener, and has been extensively generalized; for a particularly neat 
presentation see [2]. The author then presents a very different approach via 
complex analysis and transform theory; this is an even older method which 
has been very successful in establishing completeness rather than basicity. A 
final chapter gives an introduction to boundary value problems that have 
complete orthogonal systems of eigenfunctions (these help to explain why so 
many familiar sets are bases or at least total sets). There is a useful three-page 
appendix tabulating 44 systems of functions and their completeness 
properties. 

The book is admittedly an introduction which aims only to show the reader 
a few important systems and a few important methods. The author's choice of 
methods can hardly be faulted: the most widely used methods are indeed 
there. The applications are carefully worked out, sometimes in what seems to 
be excessive detail. (The author did miss Bourgin's work [1] on completeness 
of sets {/(/tx)}, which uses methods rather different from any discussed in 
the book.) Since, like any introduction, the book is necessarily limited in 
scope, a reader who becomes interested in the field to the point of wanting to 
do research in it must not assume that this book describes the frontiers of the 
field, even for the quite concrete problems that it discusses. 

The book does indeed help to fill the gap it was intended to fill. However I 
found it rather disappointing. Compared to classical Cambridge Tracts like 
those of Ingham, or Hardy and Rogosinski, or Smithies, it contains surpris
ingly little material, treated rather unevenly. The classical Tracts were 
written by mathematicians who knew everything about their subjects; they 
could pick out the most illuminating topics and present them economically 
and elegantly. This author just seems to be working too close to the limits of 
his own knowledge to be able to produce a really effective presentation or to 
make the best choice of material. 

There is a regrettable tradition, whose rationale I cannot discover, that 
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British mathematical books have wretched indices. This one maintains the 
tradition. 
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Brownian motion, Hardy spaces and bounded mean oscillation, by K. E. 
Petersen, London Mathematical Society Lecture Note Series (2) vol. 28, 
Cambridge University Press, Cambridge, London, New York, Melbourne, 
105 pp. 

In recent years the techniques and theorems of Brownian motion have been 
used to prove theorems about harmonic and analytic functions. It is always 
pleasant when two branches of mathematics which ostensibly have little to do 
with one another can help each other out. There are two main links which 
allow Brownian motion (roughly representing the paths of an idealized 
random traveller) to be connected to the theory of harmonic and analytic 
functions. Kakutani [4] showed that Brownian motion can be used to solve 
the Dirichlet problem. Dispensing with the technicalities of continuity, 
smoothness, and measurability, here is what Kakutani's theorem says: Let 5 
be an open set in Rn and let « be a real-valued function defined on 35. Let 
z E 5 and consider a typical Brownian path yz starting at z. Let s(y2) denote 
the point of 35 at which y2 first hits 35. Define u(z) to be the average value of 
u(s(yz))> where the average is taken over all Brownian paths y2. Then û is a 
harmonic function on 5 with boundary values u. 

A theorem of Levy [5] links Brownian motion to analytic functions defined 
in the plane. This thoerem states that a nonconstant analytic function 
composed with Brownian motion is also Brownian motion, although the time 
scale must be changed on each Brownian path. The inituition behind Levy's 
result is that an analytic function preserves angles, so that the randomness of 
direction is preserved. Since an analytic function need not preserve lengths, 
an adjustment of the time scale is necessary. 

For 0 < p < oo and u a function defined on the open unit disk D of the 
complex plane, define 


