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the theory of ordered groups, and contains enough material for a one 
semester course or seminar. 
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Theory of optimal search, by Lawrence D. Stone, Mathematics in Science and 
Engineering, vol. 118, Academic Press, New York, 1975, xiv + 260 pp., 
$29.50. 

That resources are limited and must be carefully allocated among compet
ing ends, each in itself desirable, is a central fact of the world we live in. The 
analysis of the resource allocation problem for society as a whole has been a 
central concern of economic theory, while its study from more limited and 
more detailed perspectives has become perhaps the major focus of the field 
termed operations research or management science. Biological study, particu
larly the field of ecology and some aspects of evolutionary theory, has also 
put some emphasis on the resource allocation problems of living creatures; 
after all, Charles Darwin ascribed his notion of natural selection to the 
influence of the economist, Thomas R. Malthus, whose emphasis on the 
implications of resource limitations earned for economics the name of "the 
dismal science." 

The book under review is a study of optimal resource allocation in a 
particular field, search for an object when the search process uses up scarce 
resources. This particular theory arose during World War II as the problem 
of locating enemy submarines and was studied by a group headed by the 
probability theorist, B. O. Koopman. Most of the subsequent interest has also 
been motivated by seeking submarines, including lost friendly ones. There is a 
considerable literature, to which the author has been a major contributor, and 
now we have a survey which is indeed admirable in scope and exposition. 

Although the author concentrates on his particular area of resource alloca
tion, more general problems are implied, and some of the theorems are widely 
applicable. Nevertheless, the search problem in its elementary forms has 
special features which enable stronger results to be obtained than are avail
able generally. 

The resource allocation problem with a single scarce resource can be stated 
as follows: Let there be a finite or denumerable set, ƒ, of possible activities. 
Each can be operated at alternative levels indexed by a real number (possibly 
restricted to the integers, if the activity can be carried on only in discrete 
steps, or to some other subset of the reals). Let ƒ be a mapping from J to the 
range of activity levels. If z is the activity level for theyth activity, let c(y, *) 
be the amount of the scarce resource used in theyth activity. Hence, if ƒ is the 
specification of activity levels, the total amount of the resource used is, 

If the total amount of the resource is considered to be limited then we are 
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restricting our choice of ƒ to those for which the above expression equals 
some given constant, K. 

To choose among these feasible allocations, the problem at hand suggests 
some criterion, to be maximized. Most generally, the criterion is a functional, 
E[f], The elaboration of this theory, which is of course a problem in 
constrained optimization, to be handled by more or less sophisticated ver
sions of the Lagrange multiplier method, occupies a vast literature in such 
fields as mathematical programming and control theory. In the case of search 
theory, however, the criterion has a special form, being additive. That is, we 
can write, E[f] * 2/ e /e[ / \ ƒ(ƒ)]• In °ther words, if theyth activity is operated 
at a level of z, then an input of amount c(j\ z) of the resource is required and 
a benefit of e(j, z) is obtained. 

Without any real loss of generality, it can be assumed that c(j, z) s z. 
Then, if the functions e(j\ • ) are concave and increasing, usual Lagrange 
techniques show that optimal solutions are characterized by a parameter, A, 
such that, for each y, z * ƒ (y) is chosen to maximize e(j\ z) — Az, with A 
chosen so that the constraint on cost is satisfied. 

In the above, / may be finite or denumerable. If instead we consider a 
continuous set of activities, say X, the maximand becomes fxe[x> ƒ(*)] dx9 

and the cost constraint, fxf(x) dx * K. In this case, a somewhat stronger 
Lagrangian result is valid; without any concavity conditions, an optimal 
policy is characterized by a parameter, À, such that, for almost all x, z » ƒ(x) 
is chosen to maximize e(x, z) - \z. (That concavity conditions are unneces
sary follows from Lyapunov's theorem that the range of a vector nonatomic 
additive set-function is convex.) 

ONE MORE REMARK. It is easy to see that f (J) [or ƒ (x)] decreases as \ 
increases and therefore increases with K for each y or x. Hence, the optimal 
policies have what the author calls an incremental property: if an optimal 
policy has been found for Kl9 and Kx < K2, then the optimal policy for K2 

under the constraint that effort for each y or x be at least equal to that for Kx 

is in fact the unconstrained optimal policy. 
The most usual single resources that might be constrained are money or 

time (which are frequently equivalent). If the resource is time, then the last 
remark has an obvious interpretation: if the problem first proposed is to 
maximize outcome for a given time and if then the time is extended, the 
maximizer will have no regrets. 

A mapping <f<y, K) [or <Kx, K) in the continuous case] into the reals is 
uniformly optimal if, for each K, <(>(•, K) is optimal when costs are restricted to 
K (my notation differs shghtly from the author's). The uniformly optimal 
policy is obtained, as just seen, by sweeping out the values of the Lagrange 
parameter and then matching them with corresponding values of K. If K is 
interpreted as total time available, then the policy is indeed uniformly 
optimal, in the sense that the allocation at any given moment, given by 
df(J)/dK, is the same for all AT, for times not exceeding K. Different values of 
K only imply different stopping times. 

Another optimality concept is that of local optimality. Having already 
allocated a total effort, K, imagine it incremented shghtly and optimally 
allocate the increment. If this is done for each Ky the resulting policy is called 
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locally optimal, and, under the assumptions made, is the same as the 
uniformly optimal policy. 

To apply these concepts specifically to the problem of search, let p(J) be 
the a priori probability that the object sought for is in theyth cell of a search 
area (in the discrete case where / is finite or denumerable). Let b(J, z) be the 
probability of detecting the object if it were in theyth cell when effort z is 
expended there; the function, b(j, • ) is increasing. The probability of detec
tion with an allocation, ƒ (ƒ) is, 

2 PÜ)b[j,fÜ)]> 

so that the general theory requires only the identification, e(J9 z) = 
P(j)b(j> z). 

If the search area is considered continuous, then a similar identification 
can be made, with/>(.*) the probability density over X, b(x, z) the probability 
of identifying an object at x with effort z, and e(x9 z) « p(x)b(x9 z). 

It is natural in a search context to identify effort with time. In that case, the 
uniformly optimal policy has another interesting property: it minimizes mean 
time among all policies which continue to discovery. In fact, a more general 
property holds. Suppose we assign a finite value to the object. Then we might 
not wish to continue the search until discovery. We might then want to search 
for a while but then stop. It follows almost immediately from uniform 
optimality that for any such search and stop policy, the uniformly optimal 
policy should be followed so long as there is any search. However, the 
determination of the stopping time cannot be given a simple characterization 
in general. 

Search and stop policies exemplify a broad class of important optimization 
problems, which may be called stochastic control or dynamic programming 
under uncertainty. The essential feature is that information is acquired during 
the process and used as the basis of further decision-making. This implies that 
earlier decisions must take into account the fact that the later decisions will 
be based on knowledge not now available. To take a simple example from 
economics: Let the decision today be the choice of a machine and that 
tomorrow the rate of production, determined by the demand which will be 
known tomorrow but not today. Some machines are highly specialized and 
efficient for one level of output but very costly to operate at other levels; 
other machines are less efficient at any given level of output than a special
ized machine but have less variability over output levels. Clearly, if there is 
enough uncertainty at the initial date about the future demand, the flexible 
machine will be preferred. 

In the search problem as stated, the informational feedback is of the 
simplest possible form; at any time ty the object has either been found or has 
not been found; the search terminates when the object is found. Because of 
this simple structure, the possibility of informational feedback does not alter 
the structure of the solution. But suppose we admit the possibility of false 
detection, which has so far been excluded; that is, the search process may 
affirm the finding of the object, and refutation requires a more detailed form 
of search. Then, at any moment the information includes the false targets 
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found and the objects detected but not yet verified. Optimal solutions which 
use this information cannot be determined with the methods used (see 
Chapter VI); policies which are "optimal" neglecting the feedback can be 
found, but simple adaptive policies are shown to improve on them. 

(If there is a significant criticism of the work under review, it is that 
insufficient attention is paid to algorithms which achieve or approximate 
optima in relatively complex situations, as opposed to problems which admit 
of elegant solutions.) 

I have surveyed essentially the first six chapters of the book but have not 
done justice to the thoroughness and clarity of the exposition nor to the 
numerous and helpful examples. The remaining chapters deal with approxi
mations and with moving targets, for which some interesting results are 
found, though not of the same generality as the earlier work. 
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Finite free resolutions, By D. G. Northcott, Cambridge Univ. Press, New 
York, xii + 271 pp., $29.50. 

This book gives a beautifully self-contained treatment of the recent Buchs-
baum-Eisenbud theory [4], [5] of finite free resolutions over a commutative 
ring with identity, as well as of a number of related topics (e.g. MacCrae's 
invariant [11]). There are two features in which the author's treatment differs 
from existing accounts of the subject: first, he confines himself almost 
entirely to elementary methods, avoiding Ext, Tor, and even exterior powers 
(we shall do likewise), and, second, he exploits a new notion of grade (or 
depth) in the non-Noetherian case which permits him to dispense entirely 
with the Noetherian restrictions on the ring. The very elementary form of the 
treatment enables the author to make accessible some fancy results from the 
homological theory of rings to readers with virtually no background in 
algebra. 

Hubert [7] gave the theory of finite free resolutions its initial impetus. 
Suppose that one is trying to understand a finitely generated module M over 
a Noetherian ring R (Noetherian means that every ideal is finitely generated, 
and implies that every submodule of a finitely generated module is finitely 
generated). To give generators ul9..., un for M is essentially the same as to 
map a free module F0 — Rn° onto M (the map then takes (rl9..., rWo) to 
S/fjty). To understand Af, one simply needs to understand the kernel 
{(r„ . . . ,rH() E Rn°: 2/,**, * 0}, call it syz*M, of this map (of course it is not 
unique: it depends on the choice of generators). This kernel is called a relation 
module or module of syzygies for M. Note that M a F0/syzlM. But then, to 
understand syz'Af, it is entirely natural to choose, say, nx generators for syz'M 
(equivalently, to map Fx » R"1 onto syzlM) and so obtain a module of 
syzygies of the module of syzygies, denoted syi?M. Of course, there is no 
reason to stop at this point, and so one can obtain a (usually infinite) 
sequence of modules of syzygies syz'M each contained in a free module 
iV_, » il1*-1. For each i we have a composite map (î -*» syẑ Af c+ ƒ)_,), call 


