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In order to explain the applications to Markov processes it is necessary to 
extend the theory to trajectories in the space of distributions (in the sense of 
probability theory) induced by the semigroup of a Markov process-for 
example, Brownian motion. For measure dynamics thus extended, the objects 
of interest become positive contractions of Lx instead of measure-preserving 
transformations of the underlying space. The proof of the maximal ergodic 
theorem may then be viewed as a statement about the potential theory, the 
balayage and the stopping times of the underlying Markov process. There are 
many other results as well which unite measure dynamics, potential theory 
and the theory of Markov processes. Regrettably, Sinai's book includes no 
discussion of these ideas, though it would have been quite possible to develop 
them in keeping with the spirit of the book, by considering special cases-the 
random walk, for example. 

Professor Sinai's lectures are beautifully written. Our criticism may be 
summarized by saying simply that they end too soon. We hope that Professor 
Sinai will publish a sequel adding problems which will illustrate more clearly 
the mathematical applications of ergodic theory and which will go further in 
developing the theory in general terms. 
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Vorlesungen titer numerische Mathematik, by Heinz Rutishauser, Birkhâuser 
Verlag, Basel, Switzerland, Bands 1 and 2, 1976, 164 pp. and 229 pp., 
Fr/DM 40,48. 

The two volumes under review here are elementary lecture notes on 
numerical analysis written by Heinz Rutishauser before his premature death 
in 1970 at the age of fifty-two. Although Rutishauser intended ultimately to 
publish these notes as a textbook, they were by no means in final form at his 
death, and in spite of the able editorship of Martin Gutknecht they remain 
somewhat rough-hewn and not a little out of date. Nonetheless, Rutishauser 
was one of the most successful and respected workers in this field, and it is 
not surprising that his notes represent one of the best introductions to 
numerical analysis as it is actually practiced. 
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The first thing to remark about these notes is that they are thoroughly 
modern in spirit, reflecting the changes that the computer has brought to the 
field. Numerical analysis is an old subject; indeed because pre-Greek 
mathematicians were accustomed to casting their problems in numerical 
form, it is difficult to separate it from the origins of mathematics itself. Many 
great mathematicians have been interested in the art of computation: 
Newton, Lagrange, and especially Gauss are notable examples. However, it 
was von Neumann who initiated the modern period of numerical analysis by 
his fathering of the digital computer. 

The effect of the computer has not been merely quantitative; it has 
changed the way people think about numerical algorithms. In the first place, 
the high speed and large storage capacities of modern computers have made 
practical algorithms that would have been dismissed as impossible in the days 
algorithms practical that would have been dismissed as impossible in the days 
of hand computation. Conversely, many algorithms designed with hand 
human can quickly scan an array of numbers and determine the largest, a 
computer must proceed by individual comparisons. 

The algorithms Rutishauser chooses to describe were clearly meant to be 
implemented on a modern computer. For example, he avoids the extended 
treatment of the difference calculus, which for a time was obligatory in books 
on numerical analysis. As pretty as this subject is, it has little to do with 
modern numerical computations, and Rutishauser rightly develops that small 
part en route to the useful interpolation formulas. 

A second effect of the computer has been to place new emphasis on the 
careful design of algorithms. One has only to attempt to program an 
algorithm of moderate complexity to realize that an outline in mathematical 
notation is not sufficient to produce an effective implementation. A 
commonplace example is the quadratic formula, whose naive use can give 
unnecessarily inaccurate results. In matrix computations one must pay careful 
attention to memory management, since most computers provide storage to 
handle no more than a few matrices of order, say, two hundred. 

Rutishauser was a master of the art of algorithmic design, and this shows 
throughout his notes. In the first place, the algorithms are clearly motivated 
so that the reader can see their insides. Second, they are accompanied by 
carefully chosen numerical examples. Some of these simply illustrate the 
normal behavior of an algorithm. However, many of them probe the 
pathology of a method, and these are the most illuminating of all. For it is 
only by seeing repeatedly how good ideas can go wrong that one can get an 
intuitive grasp of the difference between a good and a bad algorithm. Finally, 
Rutishauser treats in detail questions of implementation on a computer, even 
to the point of including program fragments. 

The computer has also increased the need for careful analyses of numerical 
algorithms. In hand computation numerical instability often exhibits itself in 
an obvious way, and even if the person performing the computation cannot 
understand exactly what has gone wrong, he is at least free to try something 
else. Programming such decisions into a digital computer may be difficult or 
impossible, and there is now a decided preference for algorithms whose 
properties are so well understood that they can be expected to work on the 
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class of problems for which they were intended. 
I say expected rather than proved, because it is seldom that a numerical 

algorithm can be analyzed in a completely rigorous manner. The example of 
Gaussian elimination for the solution of linear algebraic equations may make 
this clearer. In a now classical rounding-error analysis, J. H. Wilkinson has 
shown rigorously that Gaussian elimination with partial pivoting is numeri­
cally stable, provided no growth of elements occurs in the course of the 
reduction. However, he also has exhibited a matrix for which large elements 
do occur; consequently, the final error bounds contain a factor of 2", which 
makes them unusable in practice. 

This negative result notwithstanding, much has been gained from the 
analysis. A welter of algorithmic detail has been simplified so that one can 
decide the question of stability by examining a single number, the growth 
factor g mentioned above. This result can be used in various ways. First, it 
suggests means, e.g. complete pivoting, of improving the stability of the 
algorithm. Second, one can attempt to prove that for certain classes of 
matrices g cannot become large, and this has been successfully done. Third, 
one can monitor g during the computations and report failure if it is so 
indicated. Finally, one can perform experiments to determine empirically if g 
is likely to be large. This last approach has turned out to be the most fruitful; 
the largest value of g reported for any matrix that was not specifically 
designed to make the algorithm fail is twenty-three. For this reason Gaussian 
elimination with partial pivoting is the usual way of solving a general system 
of linear equations. 

Many analyses of numerical algorithms are like this. A rigorous mathe­
matical analysis simplifies the details of an algorithm to the point where one 
can determine rationally how it will behave in practice. In this connection it is 
important to analyze the algorithm at hand, not one modified to fit the 
mathematical tools at one's disposal. It is also important to answer the right 
questions. For example, I have seen an elaborate analysis establishing the 
ultimate swift convergence of an iterative method that in practice can grind 
interminably before its asymptotic behavior is realized. In any case, these 
constraints make the mathematical analysis of numerical algorithms an 
extremely challenging occupation. 

Rutishauser gives as much analysis as the elementary nature of the notes 
and the need for an uncluttered exposition permit. He presents an interesting 
analysis of how to determine in the presence of rounding error if a matrix is 
positive definite. In his discussion of the stability of methods for solving 
initial value problems he uses the common device of analyzing a model 
problem that is simple enough to be tractable and typical enough to be usef uL 
And there are his ubiquitous numerical examples to supplement the analyses. 

These are the major virtues of the notes. The details are as follows. 
The two volumes cover a variety of topics. The first volume treats the 

solution of linear systems of equations and least squares problems, the 
solution of nonlinear equations, interpolation, numerical integration, and 
approximation. The second volume treats the numerical solution of ordinary 
and partial differential equations and the algebraic eigenvalue problem. An 
appendix presents advanced material relating to the qd algorithm for compu-
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ting zeros of polynomials and includes an elegant axiomatic treatment of 
computer arithmetic. 

Since the notes were intended for elementary courses, they presuppose little 
mathematical background on the part of the reader. A thorough familiarity 
with calculus and elementary linear algebra is all that is required for most of 
the work. However, this does not greatly limit its scope, since most numerical 
algorithms can be derived from rather elementary considerations, even 
though a complete analysis may require a great deal of mathematical appara­
tus. Moreover, the elementary approach has enabled the author to segregate 
his topics into essentially independent essays. This is no doubt more the result 
of the lecture note format than of design, but I find the style quite congenial 
to the eclectic nature of numerical analysis. 

As might be expected from the circumstances of their publication, the notes 
are uneven, with some parts having more polish than others. More seriously, 
much of the work is out of date. No mention is made of the use of finite 
elements to solve partial differential equations; nor is the QR algorithm 
mentioned in the sections on algebraic eigenvalue problems. I found myself 
wishing that the editor had appended annotated references to more recent 
works. Not only would this have increased the value of the notes, but it also 
would have reduced the chances of the casual reader's being misled about the 
current state of the art. 

However, the virtues of the work far outweigh its defects. It is unfortunate 
that it is available only in German; for it deserves to be more widely read. 
Rutishauser's audience is not only the student, but the instructor teaching a 
numerical analysis course for the first time, and especially the mathematician 
who wants to find out what this important branch of applied mathematics is 
all about. 
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Lie groups and compact groups, by John F. Price, London Mathematical 
Society Lecture Note Series, no. 25, Cambridge Univ. Press, Cambridge, 
London, New York, Melbourne, 1977, ix + 177 pp., $8.95. 

There are few truly successful classification theorems in mathematics-that 
is, theorems which describe all examples of an apparently large class of 
objects in a relatively simple and constructive way. One of the best such 
theorems classifies compact connected Lie groups. As is usual in the subject, I 
shall use the word "simple" to mean what is also called "almost simple": G is 
simple if it has a finite center C such that G/C has no nontrivial closed 
normal subgroups. Now let G be any compact, connected Lie group, let Z be 
the connected component of the identity in the center of G, and let H = 
[G, G], the closure of the commutator subgroup of G. The classification 
theorem says that Z is (isomorphic to) a torus and that G & Z X H/F& 
where F is a finite central subgroup. Moreover, H s Gx X • • • X GH/F9 

where G 1 ? . . . , G„ are simply connected simple Lie groups (uniquely 
determined up to order by H) and F is a finite central subgroup. Finally, 


