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PART I-SURVEY 

1. Preface. Our point of departure for this paper is the standard real 
variable theorem of Lebesgue on the differentiation of integrals of functions 
of several variables. Lebesgue's theorem asserts that for any locally integrable 
function ƒ defined on Rn 

linX \R(1 r\\ f /OO # - / ( * ) a-e-> 
e-*0 \B(e9 X)\ JB(t,x) 

for certain types of «-dimensional sets B(e9 x) shrinking to x as e -* 0. 
(\B(e9 x)\ is of course the Lebesgue measure of B(e9 x).) Some standard 
examples of sets B(e9 x) are balls with center x and radius e, and cubes with 
center x and diameter e. 

The problem of considering other sets besides balls and cubes for B(e9 x) 
received much attention in the 1930's. (See for example Buseman and Feller 
[1934].) This subject again seems to be attracting interest. 

One of the two main goals of this paper is an exposition of recent 
developments in which B(e9 x) is replaced by a lower dimensional set.2 

Specifically we shall examine two cases: 
(i) B(e9 x) is replaced by a sphere with center at x and radius e, 
(ii) B(e9 x) is replaced by a piece of a curve emanating from x. 
Thus we ask, does 

Km ƒ f(x-ey)do(y)=f(x) a.e.? (1) 
«-•0 J\y\ = \ 

Here da is the rotationally invariant measure on the sphere \y\ = 1 having 
total mass 1. For continuous ƒ the answer is clearly yes. For discontinuous ƒ it 
is not even clear that ƒ f(x - ey) do(y) is well defined for all small e for 
almost every x. In one dimension the answer to 1 is clearly no, even if ƒ is 
restricted to lie in the class of bounded functions. No positive results for (1) 
are true in any dimension for all locally integrable ƒ; however the answer is 
yes if we restrict our attention to f s which are locally in an appropriate If 
class and n > 3. Specifically, we have Theorem A. 
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THEOREM A.Ifn>3 and f is locally in Lp,p > n/{n - 1), 

Hm f f(x - ey) do(y) = f{x) a.e. 
e—>0 J 

This is false ifp < n/(n — 1), for any n. 

We do not know what happens if n = 2 and/? > 2. It is to be understood 
that part of the assertion of Theorem A is that the limit above is well defined 
for almost every JC. 

Incidentally, the analogue of Theorem A with the sphere replaced by the 
boundary of a cube is false. This should be the first hint to the reader that 
curvature will play a decisive role in these matters. 

For our second question we let y(t) be a continuous curve in Rn with 
y(0) = 0. We ask, does 

lim I Jo
Hf(x-y(t))dt=f(x) a.e.? (2) 

The answer to (2) is yes if y(t) is a half-line, and this is, in fact, an easy 
consequence of the one-dimensional theory. We shall (in Part III) give 
examples of C00 curves y(t) such that the answer to (2) is negative even if we 
restrict ourselves to the class of bounded functions. Thus to obtain positive 
answers to question (2) it is necessary to restrict attention to a subclass of 
curves. Again curvature is crucial. We obtain positive results if y has an 
appropriate amount of curvature. Let us say that a C00 curve y(t) in Rn is 
well-curved if y(0) = 0 and a segment of the curve containing the origin lies 
in the subspace of Rn spanned by 

<r(0 dtJ w j= 1,2,3, . . 
/ - 0 

The following result holds: 

THEOREM B. Let ƒ be locally in Lp,p>\. Then 

Jim I fo
hf(x-y(t))dt=f(x) a.e. 

provided y(t) is well-curved. 

To see the full significance of Theorems A and B, we shall, in §2, review 
relevant classical aspects of singular integral theory, differentiation theory, 
and especially the relation between them. This will suggest the control of 
appropriate maximal functions is the basic underlying analytical problem, 
and that there should be singular integral operators related to the curves y(t). 
These operators are defined by 

3C/(*) = ƒ _ / ( * - Y ( 0 ) f • 

{% is well defined as a principal value integral if ƒ is smooth.) 
3 Note that in R2 if y has nonvanishing curvature at the origin, it is well-curved. Similarly in 

R3, if it has nonvanishing curvature and nonvanishing torsion. Also any real-analytic curve in Rn 

is well-curved. 
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In fact, our subject matter actually arose with the study of % rather than 
differentiation theorems, because results on % can be thought of as building 
blocks for large classes of singular integral operators. 

In view of this, our second main goal will be to prove inequalities of the 
type 

\\%f\\, < ApWfWp* K / X o o . (3) 
We shall show 

THEOREM C. 

W\\P < A,\\f\\p> 1<P<«>9 

provided y is well-curved. 

This assertion is false for arbitrary C00 curves. 
We shall begin in §2, as we have indicated, with a review of some of the 

classical ideas of maximal functions, differentiation theorems, singular 
integrals, their relationships and their applications. We shall then try to 
indicate the difficulty of carrying over the old methods to the present 
problems. Finally we shall try to explain new ideas that enter our analysis; 
namely, we show how to exploit the curvature of the curves and spheres 
mentioned above-via the Fourier transform-to obtain Theorems A, B, and C 
above as well as other related results. 

Part II will be more technical and will contain the detailed proofs of the 
new results described in the first part. The final part will be a brief 
epilogue-where further results will be stated and some problems will be 
posed. 

We want to take this opportunity to record our great debt to Alexander 
Nagel and Nestor Riviere with whom we have worked side-by-side on several 
of the results described below. If we have shared some disappointments, we 
have also shared the satisfaction of the fruits of this labor. 

2. Background. We shall begin by reviewing those parts of the theory of 
harmonic analysis which will be directly relevant to us. We focus our 
attention on two kinds of basic estimates made in the theory of singular 
integrals: L2 estimates, and LP estimates. For the former the crucial tool is 
the Fourier transform, as is well known; the latter proceeds by using ideas 
which have a very different origin, namely covering lemmas leading to the 
"maximal functions" of Hardy-Littlewood or differentiation theorems to 
control singular integral operators. We shall anticipate one of our main ideas 
when we say that, in distinction to what had been done in the past, we shall 
use singular integrals, or more precisely variants of Littlewood-Paley 
functions to help estimate maximal functions. Thus we shall control maximal 
functions at least in part by the use of the Fourier transform, and in effect use 
the Fourier transform to prove differentiation theorems. 

2.a L2 estimates and the Fourier transform. There is, to begin with, the 
Plancherel theorem. For ƒ an appropriate function on Rn, its Fourier trans­
form/is given by 

ƒ( ! ) = ƒ exp(2mx • | ) ƒ (x) dx. 
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The mapping ƒ -> ƒ extends to a unitary operator on L2(Rn); thus in particu­
lar, 

II fh = II/lb- (4) 
The rather immediate application of PlancherePs theorem is then as 

follows. Consider any operator T of convolution type 

T:f->f K(y)f(x-y)dy. (5) 

In order not to get entangled in technicalities we assume here that the 
kernel K is quite general (a tempered distribution) and that T is thus initially 
defined for ƒ which belong to the test class § of Schwartz. (5) is the most 
general operator (defined on S ), which commutes with translations. Now the 
condition that T extends to a bounded operator on L\Rn) (to itself) is a very 
simple one: Namely K (the Fourier transform of A' as a distribution) should 
be equivalent to a bounded function. Let us give several examples of this. The 
first is the Hilbert transform H on Rl. Here K is the principal-value 
distribution representing the function K(x) — l/irx. A simple argument (in 
effect, an evaluation of a classical integral) shows that K (£) = i sgn £. These 
considerations show that the Hilbert transform is bounded on L2 (and in fact 
unitary). Among the many reasons why the Hilbert transform H is funda­
mental in harmonic analysis on Rl we list the following: 

(a) H connects the real and imaginary parts of functions on Rl which are 
boundary restrictions of suitable holomorphic functions in the upper-half 
plane. Closely connected with this is the fact that the operator C = (I + 
iH)/2 is the orthogonal projection on L\Rl) whose range is the restrictions 
of holomorphic functions (more precisely those belonging to the Hardy space 
H\R% 

(b) H is characterized (up to a constant multiple), by very simple structural 
properties. H commutes with translations and also with dilations (the 
mappings ƒ (*)-> ƒ (tx), t > 0), and anticommutes with the reflection ƒ (x) -» 
ƒ(—x). These facts are, on the formal level, simple consequences of the 
corresponding homogeneity of the kernel \/(jrx) (or the multiplier i sgn £)• 

To discuss examples for Rn, n > 1, we turn to partial differential equations, 
and in particular to constant coefficient elliptic differential operators. A 
differential operator P(3/3x) - 2 (a |<*aa(8/3x)a , with (d/dx)a « 
(3/3*,)*' • • • (3/3JCJ% a = (a„ . . . , a„), |a| = ax + • • • + an or order k 
is said to be elliptic if the part of the characteristic polynomial of degree k9 

2|«|.*tfa£
a, vanishes only when | = 0. For these operators using the Fourier 

transform one can prove the a priori estimate 

|(£)"lHH£)i}' w<*. m 
for u which are suitably smooth. 

This estimate, and others of the same kind, can be used as the starting 
point for proving existence and regularity results for elliptic differential 
operators with constant coefficients, and then one can prove as a 
consequence similar estimates and results for equations with variable 
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coefficients. Included among these estimates are the "Garding inequalities". 
For further discussion of these matters see e.g. Yosida [1965, Chapter VI], 
and Treves [1975, Chapter III]. 

Let us look at (6) more carefully. We shall get more insight into the 
situation if we consider the corresponding inequalities which are homo­
geneous under the standard dilations (the dilations map u to ut9 where 
ut(x) = t~nu(8t(x))9 8t(x) = (txl9..., txn) with x = (xl9..., xn) for all / > 
0). We then restrict our attention to homogeneous elliptic operators, i.e. 

One obtains as a variant of (6), 

K £)"!<+(£)•{• M-* o 
whenever e.g. u is smooth and has compact support. It turns out the 
inequality (7) essentially contains the full force of (6). 

Now there is a (unique) bounded operator T on L2, which maps P(d/dx)u 
to (d/dx)au (for each P and each a, with \a\ = k)9 i.e. 

{•s)'-"(U <8> 
This operator T can be written as T = T0 + cl9 and when c is suitably chosen, 
the operator T0 is of the form (5) where the kernel K is a principal-value 
distribution, represented by a function K(x), x ¥* 0, which satisfies the 
following properties 

(a) K is homogeneous of degree — n9 i.e. 

K(d,(x))-r»K(x), t>0, 
(b) K is C °° away from the origin, 

(c) ƒ„_,*(*)*(*)-(>. 
In fact (a) is the reflection of the equal homogeneity of P(3/3x) and 
(3/3jc)a. Property (b) is closely related to the regularity of P9 namely any 
solution of P(d/dx)u = 0 is C00 where defined, (c) is a consequence of the 
subtraction of the appropriate constant multiple of the identity in defining T0. 

Now we come to an important turning point. One can take properties (9) 
(a), (b), and (c) as the starting point (in fact (b) can be considerably relaxed), 
and study the class of operators T given by (5) with K satisfying (9) (a), (b), 
and (c). These are the operators of Mihlin [1950], and Calderón and Zygmund 
[1952]. 

What are the operators we get in this way? When n « 1 there is (up to a 
constant multiple) only one K which satisfies (9) (a) and (c) ((b) is redundant 
when n * 1), and this is K(x) « \/mx9 so we are back to the Hilbert 
transform. However when n > 1, there are infinitely many examples and 
variants, some not directly connected with partial differential equations, but 
of interest in other problems in analysis. For all K of type (9) (a)-(c) one can 
prove 
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niyii2<^ ii/ik (io) 
and this follows once we know that K is a bounded function. For further 
discussion see e.g. Stein [1970a, Chapters II and III]. 

We shall now turn to other types of estimates, the LP estimates, for 
operators such as T. 

2(b) Lp estimates and maximal functions. It may be useful if at this stage we 
try to answer a question that is often asked. Given an operator T, what is the 
interest in Lp estimates for it? The answer is, first of all, that we usually wish 
to compare the size of Tf to the size of/, and inequalities involving Lp norms 
are often a convenient way of making such comparisons. But there is an 
additional reason. When we are making Lp estimates, we are often gaining a 
much more complete grasp of how the size of Tf is controlled by the size of/. 
We will see some of this in several examples below. This control will then be 
in terms of the "distribution function" of Tf that is \{x: \Tf(x)\ > <x}\, in 
terms of the corresponding objects which involve ƒ, or in terms of certain 
special operators acting on/. 

With these justifications taken as understood, we turn to some of the actual 
Lp estimates. The source of many of these must be different from that of the 
special case p = 2, since those used the Plancherel theorem, and of course 
there is no analogue of this theorem for other values of p. A basic tool here is 
the maximal function M, which represents the maximum of averages of | / | 
taken over balls. More precisely, we write whenever ƒ is locally integrable, 

M/(*) = sup -L f \f(x-y)\dy 
r>0 cr J\y\<r 

where c is the volume of the unit ball. Since 

lim
n TT» L f(x-y)4y=f(x) a-e- (") 

r-*Q cr J\y\ < r 

it is clear that Mf dominates ƒ. It turns out that Mf is in fact not much larger 
than ƒ (in a suitable sense), but has many advantages over/; in particular Mf 
is the crucial basic operator that provides a large amount of the control of Tf 
for operators T satisfying 9 (a), (b), (c). 

Not only is M basic in singular integral theory, but also appropriate control 
of M is equivalent to Lebesgue's differentiation theorem. This, then, is the 
promised tie between differentiation theorems and singular integrals. 

The maximal function M also plays a fundamental role in studying other 
"approximations to the identity" which are very useful in applications. Let O 
be a fixed nonnegative function which is radial and nonincreasing, and so 
that fRn$(x) dx = 1. Set $£(JC) = e~n$(x/e). Then whenever ƒ e Lp(Rn), 
1 < p < oo, (ƒ * $e)(x)-+f(x) a.e. as e-»0. The connection with the 
maximal function is that 

sup |/*4>c(x)|< Mf(x). 
e 

We shall enter into these applications of M in more detail in a moment. 
First, however, we shall consider the basic properties of M. 

If ƒ e Lp(Rn)9 1 < p < oo, then Mf G LP, and 



PROBLEMS IN HARMONIC ANALYSIS 1245 

\\M(f)\\P < 4 , | | / | | , . (12) 

For p — 1 this kind of estimate cannot hold, but there is a corresponding 
result (the "weak type (1,1)" inequality) 

\{x\Mf(x) > a}\ < AWfWJa, a > 0, (13) 

and this inequality is in short the key to the whole theory of M. (The 
fundamental facts about the maximal function when n = 1 were discovered 
by Hardy and Littlewood [1930]. The «-dimensional theory is due to Wiener 
[1939], and Marcinkiewicz and Zygmund [1939]. That (13) implies Lebesgue's 
theorem is elementary. The fact that (13) is equivalent to Lebesgue's theorem 
is less simple. It follows from Stein [1961]. For material on other appro­
ximations of the identity see Stein and Weiss [1971, pp. 13 and 59].) 

We shall say a few words about the proof of (13). It follows directly from a 
covering lemma of Vitali type, which by now has many variants, and a trivial 
remark. The trivial remark is 

(14a) If Mf(x) > a, x is contained in some ball B centered at x with 

We state a particularly simple special case of the covering lemma: 

(14b) BASIC LEMMA. Suppose E is a measurable set in Rn
9 which is contained 

in the union of finitely many balls, Bl9 B29..., BN. Then there is a subcollection 
of these balls Bii9 2? l 2 , . . . , B^9 whose interiors are disjoint, so that 

2 |*| > C\E\ 
(C is a positive constant depending only on the dimension n). 

The key to the Basic Lemma, is the following 
(15) GEOMETRIC FACT. If Bx and B2 are two balls with nonempty intersection, 

and diam Bx > \ diam B29 then 

Bf D B2 

where Bf is the sphere with the same center as Bx and diameter 5 times that of 
B{. 

The demonstration that (15)->(14)->(13)-»(12) can be found in many 
places, e.g. in Stein [1970a, Chapter I]. 

To see that (13) implies (11), note first that (11) is obvious if ƒ is 
continuous. Next, since the result is local in nature we may assume that ƒ is 
integrable over all of Rn, and approximate it in L1 norm by continuous 
functions. Finally (13) allows us to control the error when we replace ƒ by 
these continuous functions. 

We turn now to the operator T of (5), discussed before, with K satisfying 
the condition (9). We then have the basic application of the maximal function 
M to Lp inequalities. 

THEOREM./-» T(f) extends to a bounded operator on Lp(Rn)91 < p < oo. 

We shall not sketch the proof of this theorem, but we shall content 
ourselves with the following observations. What is actually proved (from 
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which the theorem follows without too much difficulty) is an estimate for the 
distribution function of Tf, 

\{x\Tf(x)\ >a}\ <A\{x\Mf(x) > a}\ + 4 ƒ l / l 2 * - (16) 
or J\!\<a 

The first term of the right side of (16) gives the control in terms of the 
maximal function, and the second term comes from the L2 estimate made 
earlier. (See Calderón and Zygmund [1952], also Stein [1970a, Chapter II].) 
With some additional arguments one can remove (at least in appearance) the 
L2 term, and state the estimate as a conditional inequality in terms of the 
maximal function M. Namely for every y > 0 (with y taken to be small) there 
is a positive constant Av so that for all a > 0 

| {* | \ff(x)\ > a}\ < \{x\AyMf(x) > a}\ +y |{* | \ff(x)\ > a/2) | .4 

(For estimates of this kind see Burkholder and Gundy [1970], and Coifman 
[1972].) 

3. Spherical maximal function. Just as Lebesgue's differentiation theorem is 
closely tied to Mf9 the differentiation theorems described in the preface are 
consequences of estimates for appropriate maximal functions. We consider 
first the maximal function appropriate for Theorem A. 

We consider here averages not over balls, but over spheres. That is we 
consider 

W(*) - f / ( * - ty) do{y), t > 0, (17) 
J\y\-i 

where da is the rotationally invariant measure on the unit sphere with total 
mass 1. We define 

91t/(x) = sup \MJ(x)\ 
i>0 

and ask whether there is an estimate of the form 

I W l l , < 411/11, for some/;, 1 < p < oo? (18) 

(To avoid technicalities with the definition of 9H, we assume ƒ is smooth. We 
shall show later that if (18) is true for some/?0 < oo and smooth/, tyti is well 
defined and (18) continues to hold for all ƒ in LPo.) 

It is obvious that Mf(x) < (9ïL(f))(x), if ƒ > 0, where M is the maximal 
function defined in terms of balls, so any result of the kind (18) would 
represent an extension of the classical maximal theorem. The obvious things 
that can be said about (18) are in the negative. First, (18) is false when n = 1, 
for any/? < oo. To see this one merely needs to take an unbounded ƒ which 
belongs to every LP(R x\p < oo. Next using the same idea (see Part III) one 
can see that when n > 2, then (18) is false as long as/7 < n/(n - 1). What is 
surprising is that the following result holds. 

THEOREM A'. Suppose n > 3, andp > n/(n - 1). Then (18) is valid. 

Thus when n > 3, we know exactly for which p (18) can hold. For n = 1 
4 Here T is the maximal operator corresponding to variable truncations of T. 
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we also know the answer, trivially. Only the case n = 2, p > 2 still remains 
undecided. 

Theorem A' easily implies the positive assertions of Theorem A of the 
preface. The negative results of Theorem A follow in the same way. 

Theorem A' and the method of its proof (which we shall sketch in §5 
below) has several consequences which we now mention. First there is the 
following paradoxical measure-theoretic assertion (which gets us back to the 
technicalities we mentioned before). Whenever E is a Lebesgue measurable 
set in Rn

9 n > 3, then almost every x E Rn has the property that E n {y\ \x 
— y\ = t) is (n — 1 dimensional) measurable, for every t > 0. Moreover if E 
has measure zero, then E n {y\ \x — y\ = t) has (n — 1 dimensional) 
measure zero, for every t, for almost every JC. These curious considerations are 
the ones mentioned above which allow us to give precise meaning to 
Theorems A and A' for general/. 

The complete study of the maximal function 9H requires us to consider 
together with the spherical averages Mt also the averages Mt

a, which when 
a > 0 are defined by 

W (/)(*) - c(a)f (l - ^ ) f(x-y) dy, 

for appropriate c(a), and are given by analytic continuation in a for other a 
(see §§3 and 7 in Part II). (For a = 0 we recover Mr) Now the functions Mf 
have an independent interest-for special values of a they give us the solution 
of the wave equation 

jZi dxf dt2 

satisfying u(x, 0) = 0, du(x, 0)/dt = f(x). More precisely, for a suitable 
constant c = cn> the solution of this problem can be written as 

u(x91) - ctMt« (ƒ)(*) 

with a = 3/2 — n/2. When n = 1 we have, of course, the familiar solution 

1 C* u(x, t) = - J ƒ(x - s) ds. 

The classical differentiation theorem, namely 

can by the above be generalized as follows: u(x9 t)/t->f(x) a.e. as t-*0 
when ƒ is locally in Lp(Rn), with/7 > 2n/(n + 1). This is a consequence of 
the maximal theorem for Mj* (Theorem 14 in Part II); see also Stein [1976a].5 

4. Maximal functions and Hubert transforms along curves, and nonisotropic 
dilations. Let y(t) be a continuous curve with y(0) = 0. To prove Theorem B, 
we introduce an appropriate maximal function 

5 We are indebted to A. Cordoba for suggesting this kind of application. 
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9H/(x)= sup I fH\f(x-y(t))\dt. (19) 

(This is, of course, not the same 91L as occurs in §3.) We shall show later, and 
this is not difficult, that 91L is well defined for any locally integrable ƒ. 

We shall prove 

THEOREM B'. If y is well-curved, 
\m\\P<Ap\\f\\p9 \<p<oo. 

Theorem B' implies Theorem B. If we followed the classical lines of §2, we 
would try to prove Theorem C as a consequence of the theory of 9IL. This 
will however not be the case. 

An important feature of well-curved curves appears when we consider the 
simplest two dimensional examples; namely, 

y(0 - (*>, / * ) , t > 0, 

where y and k are distinct positive integers. These examples are not as special 
as they might seem at first sight, since the general well-curved y (in two 
dimensions) is in a sense approximated by these "model" curves. The new 
feature of the examples is that y(t) is homogeneous with respect to some 
nonisotropic dilations of the underlying R2. That is we have a one parameter 
family of dilations, 8t9 of R2 to itself, for t > 0, given by 

8t(x) = (tJxi9t
kx2), t>09 

and 
y(ts) = 8ty(s), * > < U > 0 . 

In fact y(t)91 > 0, is actually the orbit of the point (1,1) under these dilations, 
and our study of 911 and % in this case as well as the more general one will 
depend crucially on these dilations. 

One can present the general notion of nonisotropic dilations as follows. It 
is a one-parameter family S„ / > 0, of hnear transformations of Rn with the 
properties 

(BL)Ôt8s = 8ts,t,s>0, 
(b) 8X = Identity, 
(c)8,(jc)-»0,as/-»0,foranyjc G Rn. 
Consider a "homogeneous curve" defined by y(t) » 8t(e), for t > 0, and 

Y(0 * *-/(ƒ)» for t < 0, where e and ƒ are two vectors in Rn. It will be 
necessary to assume that the two pieces, the one for positive t and the one for 
negative / are compatible in the following sense: the linear space spanned by 
{y(0}/>o equals the linear space spanned by {y(0}/<o- (Without this 
condition there could be no theory for %.) However for 91L only y(t)91 > 0, 
is relevant 

THEOREM D. The inequalities 
IWII , < Ap\\f\\p9 \<p <oo, (20) 

and 
m\\P<Ap\\f\\p9 l<p<oo, (21) 
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hold for the class of curves described above. 

It should be stressed that Theorem B' does not imply (20) or vice versa, 
(similarly with Theorem C and 21). However all these results have common 
roots in that both depend in a key way on the use of nonisotropic dilations. 
These dilations are given, in effect, explicitly for homogeneous curves, but are 
implicit when y is well-curved. 

The nonisotropic dilations which are so important for us occur also in 
significant ways in several other questions in analysis. We mention briefly the 
following examples: 

(1) Estimates for solutions of constant coefficient parabolic differential opera­
tors. (See Jones [1964], Fabes [1966], Fabes and Riviere [1966] and [1967].) 
The simplest instance of this occurs when one considers the operator of the 
heat equation, 

If one wishes to have analogues of (6), (7) and their LP versions, then one 
needs to consider singular integral operators with kernels satisfying 
conditions akin to (9) however (9) (a) should be replaced by the condition 

K(8t(x)) = (det 8ty
lK(x), t > 0, 

where 8t(x) = (t2xl9 tx2,..., txn). 
The Hubert transform % for homogeneous curves corresponding to these 

dilations may be viewed as the basic building block for this class of singular 
integrals, if one adapts suitably the "method of rotations" of Calderón and 
Zygmund [1956]. 

(2) Estimates for some subelliptic partial differential equations. One can go 
further in this direction and study some general classes of variable coefficient 
subelliptic partial differential equations. Without going into detail we can say 
that in this context Rn has its additive structure replaced by another group 
multiplication and the dilations in question are required to be automorphisms 
of the group structure. The analogues of the operators (5) (with the 
appropriate variants of (9)) are then convolution operators with respect to the 
group structure. A theory along these lines has been carried out, and gives the 
appropriate class of singular integral operators, sharp estimates, etc. for the 
second-order hypoelliptic operators of Hormander [1967] type. (See 
Rothschild and Stein [1976].) A particularly interesting example arises in the 
setting of the inhomogeneous Cauchy-Riemann equations for domains (and 
boundaries) in several complex variables. Here we consider R2n+i as the 
Heisenberg group; that is R2n+l = Cn X Rl = {(z, 0, z ECn

9t Œ R), with 
the group multiplication (z, i) • (z', /') = (z + z', t + t' + 2 lm z • z'). 
Observe that the dilations 8s(z, /) = (sz, s2t), s > 0, are compatible with the 
group multiplication; while the standard ("isotropic") dilations are not, and 
hence are largely irrelevant. For further details see Folland and Stein [1974]. 

(3) Analysis on symmetric spaces. Various problems related to a semisimple 
Lie group C, or its symmetric space G/K lead to such nonisotropic dilations. 
We mention here only the extensions of Fatou's theorem dealing with 
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existence almost everywhere of boundary values of harmonic functions 
(Poisson integrals) on G/K. See the surveys of Stein [1971], and Koranyi 
[1972], and the recent results in Stein [1976c]. 

5. Sketch of the proofs of the main theorems. Let us begin by pointing out 
some of the difficulties of carrying out the program of §2 for curves y(t) in 
R2. We make matters a little clearer by fattening out the curves slightly. Then 
we wish to consider sets 

K* - {(*>>0|0 < x < 6, y(x) <y< y(x) + 8 }. 

Then to obtain the analogue to the inequality (13), we would like to prove 
(14b) (with the balls Be replaced by Ee9 and C independent of 8). The 
difficulty is that the analogue of (15) is miserably false. (Actually we do not 
know if the analogue of (13) is true.) Even then we don't know anything like 
(16) so that we can't use results for 91L to obtain results about %. 

In the case of spherical averages, similar comments can be made, but the 
situation is much worse. The analogue of (13) is false, and in addition the 
analogue of (14a) is no longer valid. 

So much for the difficulties. We turn now to the outline and main ideas 
behind the proofs of Theorems A', B', C, and D. 

The estimates for maximal functions related to spheres and curves are 
based on the same device: A Tauberian argument effectuated by a variant of 
the Littlewood-Paley g-function. Recall that one of the classical Tauberian 
theorems can be stated as follows. Suppose 2 a* is a numerical series, and we 
are interested in its convergence i.e. the question whether 

n 

SH = 2 aur> ' as /2 -> oo. 

Then a sufficient condition for this to hold is that the averages tend to /, i.e. 

together with the condition on the coefficients, 

ak~0{\/k) asfc->oo. (22) 

There are many variants of (22) that abound in the literature. For us, what is 
relevant is that instead of (22) it suffices to have 

f *kl2< oo. (23) 

(For a general treatment of Tauberian theorems see Hardy [1949], and in 
particular Theorem 69.) 

The quadratic nature of (23) provides the link with L2 theory and thus the 
Fourier transform. 

Let us now describe the proof of Theorem A' in the special case when 
p * 2 and n > 4, where the argument is particularly simple. We are interest­
ed, in effect, with lim^Af/, but we cannot control the averages of MJ in 
terms of the usual maximal function M. So we seek a Tauberian condition 
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akin to (23). What we need is expressed by the operator 
/ 2 xV2 

*(ƒ)(*) - (Jf | Jt K(/)W| ' *) • (24) 
(We are interested at this stage in a priori inequalities, so we may assume ƒ to 
be smooth, and thus (24) is well defined.) 

The main point about g(f)-thc Tauberian condition-is that 

ll*COIb<C||/||2 if«>4. (25) 
Let us assume (25) momentarily. Now 

SO 

Mt(f)(x) = rnn f MJ(x)s»-1 ds 

The first term is obviously controlled by M (ƒ)(*) of §2, and the second 
term can be estimated by 

/ •? \ ^' 1 / 2 

( J M T | * J
 ri£s2"-'*) <<*<»<*>• 

Therefore, 
%f(x) < c{Mf(x) + *(ƒ)(*)}, 

and (25) together with (12) proves that 

\\%fh<Mfh, if« >4. 
We return to (25). As is well known 

where 

m(u) « cu-n'2+xJH/2„x (2™), u > 0.6 

Thus by the Plancherel formula (25) is equivalent to the inequality 

r 
dm(t) '2 

~dT t dt=* c2 < oo. (26) 

The integral in (26) converges since m' (as well as m), satisfies the 
inequality 

m ' ( , ) = 0 ( , - « / 2 + l/2) (27) 

as t -» oo, while m is smooth locally. 

6 See e.g. the closely related formulae in Stein and Weiss [1971, p. 155]. 
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The estimate (27), which makes the I? theory possible, is a direct reflection 
of the curvature of the sphere, since of course m is essentially the Fourier 
transform of the uniform measure on the unit sphere. The observation 
connecting the decay of m and the curvature of the sphere is highlighted by 
similar known estimates where the sphere is replaced by various genera­
lizations (e.g. smooth compact hypersurfaces with strictly positive Gaussian 
curvature). For these facts and generalizations see Hlawka [1950], Herz 
[1962a], Littman [1963], and Randol [1972]. In the other direction, if all 
curvature assumptions are dropped then the best we can hope for instead of 
(27) is m\i) = 0(1), and then of course the rest of our argument breaks 
down. 

Before we continue it may be of interest to make some remarks of a 
historical nature concerning the role of g-functions. Littlewood and Paley 
[1931], [1936], [1937] introduced the expression 

[j\\ - r)\F\rew)\2 dr\ , 

where F is holomorphic in the unit disc, and used it in crucial ways to prove 
Lp inequalities for Fourier series. Since then many variants have been 
studied, including the Lusin "area integral", g* functions, generalizations to 
Rn etc. These extensions may be viewed as operators defined in terms of the 
Poisson integral of ƒ (or other approximations to the identity), where ƒ is a 
suitable function on Rn. These play a key role in multiplier theorems and Hp 

theory for Rn. (See Zygmund [1959, Chapter 15], Stein [1970a], and Feffer-
man and Stein [1972].) Their importance in this connection is due to the fact 
that, roughly speaking, the norm of g(ƒ) is equivalent with the norm of ƒ, 
while g is more flexible than ƒ is under various transformations. Thus the 
g-functions become, in some sense, the central objects of study. 

In the present context we have still other variants of these g-functions but 
here the role is changed from a primary one to a supporting one, in terms of 
Tauberian conditions. It should be emphasized that using variants of the 
g-functions in their Tauberian capacity is not without precedent. For 
example, in the general L2 theory of orthogonal series, as in Kaczmarz and 
Steinhaus [1951, Chapter 5]; in the summability theory of multiple Fourier 
series and integrals (see e.g. Stein and Weiss [1971, Chapter 7], and in the 
theory of general symmetric diffusion and semigroups, as in Stein [1970b]). 

We return to the proofs of our theorems. The arguments for the maximal 
inequalities for smooth curves and homogeneous curves, Theorem B' and (20) 
of Theorem D, for/? = 2, are carried out in a similar vein as sketched above, 
and require the introduction of g-functions suitable to these problems. We 
describe the situation briefly. Suppose y(t) is a homogeneous curve, and let us 
make the additional assumption that {y(0}*>o spans all of Rn. Then one can 
show that 

fb exp(/| • y(0) dt= 0 ( | £D> as {-* oo (28) 
Ja 

for some positive a, and the estimate is uniform in a and b as long as they lie 
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in a compact subinterval of (0, oo). This can be proved by using estimates of 
the van der Corput type. Now (28) is the substitute for (27) in proving L2 

boundedness of the appropriate g-functions, and hence the maximal function 
associated to the curve y. 

Instead of now describing how the Lp inequalities are proved for 911 it will 
be best to sketch first the proof of the LP inequalities for the Hubert 
transform % associated to a homogeneous curve y. 

We are dealing essentially with the operator formally defined by 

WW - r A* - Y(O) f • 
Its L2 boundedness is equivalent with the boundedness of the multiplier, 

namely 

«($)«ƒ" «**'> f (29) 
* — OO ' 

where the nonabsolutely convergent integral is taken in the principal-value 
sense. Thus one first proves the boundedness of the function m. This turns 
out to be an easy consequence of the estimate (28). 

In order to do the Lp theory one needs a stronger version of this result. 
One lets 8* be the adjoints of 5, associated to y. The 8* form another one 
parameter family of dilations. Then we can construct an associated "norm 
function" p* with the following properties: p*(£) > 0, except when £ = 0; p* 
is C00 away from the origin; and p* is homogeneous in the sense that 
p*(S*(£)) = tp*(Q, t > 0. We then consider the fractional differentiation 
operator Dz

9 of complex order z9 defined formally by 

(/>y)-(0 = (p*(i))7 (0-
Also one considers the analytic family of operators defined by 

r , ( / ) - D ' . ƒ °° ƒ(* - 7(0)l'|z f • (30) 

Note that T0 ƒ * %f. 
Because of (28) one can prove 

\\TJ\\2<Ag\\f\\2> 0<R(z)<a. (31) 
This result is stronger than the L2 boundedness of H = T& since Tz can be 

viewed as a convolution with a distribution more singular than that defining 
H. But the advantage of considering Tz is that when R (z) < 0, Tz is now 
closer to a more traditional singular integral, in fact one for which by and 
large the methods of §2 apply. Thus one can show that 

\\TJ\\, < A(z,p)\\f\\p9 Kp< œ,R(z) < 0. (32) 

A combination of (32) with (31) by analytic interpolation of operators gives 
the desired Lp estimates for H. 

The Lp inequalities for the maximal function M are proved in the same 
spirit. First the L2 result described above can be refined, and the final result 
is obtained by complex interpolation involving the improved L2 results and 
other Lp results of a more standard nature. 
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As we close this survey it may be worthwhile to see the patterns of the 
arguments retrospectively, in terms of the order in which the proofs were 
actually developed. The L2 boundedness of % in the two-dimensional case 
y(t) * (ta, tfi) was proved by Fabes [1966]. He showed m was bounded by 
use of complex integration. Then Stein and Wainger [1970] proved the 
L2-boundedness for % for homogeneous curves by using van der Corput's 
estimates for trigonometric integrals to obtain the boundedness of m. The 
first main breakthrough was the proof of the IP inequalities for %, in a series 
of papers of Nagel, Riviere, and Wainger [1974] and [1976a] by a method 
akin to (but somewhat more indirect than) the one we have sketched. The 
next idea was the proof of the maximal theorem for the curve (/, t2) by Nagel, 
Rivière, and Wainger [1976b]. The argument was special to that situation but 
had the virtue of showing the usefulness of the Fourier transform in the proof 
of maximal inequalities. There followed a pair of papers (Stein [1976a], 
[1976b]) introducing the technique of g-functions in this problem and proving 
Theorem A' and the maximal theorem for homogeneous curves. The chain of 
arguments was completed in Stein and Wainger [1976], which contains 
Theorem B' for 91L, the maximal theorem for smooth curves. 

PART II-SOME DETAILED PROOFS 
1. Dilations. By a one parameter group of dilations on R", we mean a 

collection of linear transformations 8t,8t:R
n-*Rn one for each t > 0 having 

the following properties: 
(1-1) 8st - 8,5, and 8X - identity, 
(1-2) Stx -* 0 as t -> 0 for every x in Rn, 
(1-3) Stx is jointly continuous in t and x. (Actually (1-3) is a consequence of 

(1-1) and (1-2).) 
Corresponding to the one parameter group of dilations 8t we define a 

transformation on functions or distributions <f> -> <f>, where 
(M^M-Cdeta,)-1^-1*). 
We shall also say that a curve y(t), t > 0, is homogeneous with respect to 8t 

if 
y(ts) = 8ty(s) for s, t > 0, or equivalently, 
y(t) ~ 8te, t > 0, where e is a fixed vector in Rn. 
It follows from (1-1) to (1-3) that when t > 0, 
(1-5) 8t(x) = exp{^4 In t}x 

for some real matrix A. Moreover since 8t(x) -» 0 as t -* 0, each eigenvalue of 
A has positive real part. We shall set a = tr A. 

We remark that y (J) is homogeneous with respect to 8t if and only if 
Y(t)-Ay(t)/t. 

It is then immediate from (1-5) that 8t has the following property: 
(1-6) For each x with |JC| = 1 

Cj/"1 < \8tx\ < c2t«
2 for/ > 1, 

and 

c3t
a* < \8tx\ < c4t

a* for f < 1; 

here cl9 c2, c3, c4, au <x2, a3, and a4 are some positive constants. (To see the 
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validity of the right-hand side of (1-6) extend A to act on Cn in the obvious 
way, 

A (xx + ix2) = Axx + iAx2. 

Then put A in Jordan canonical form. The left-hand side of (1-6) follows 
from the right-hand side and the observation 

|*| = |8,-M < |«,-,| |s,4) 
We wish next to define a norm function p(x\ which is smooth and positive 

away from the origin and which is homogeneous with respect to the dilations 
8t; that is such that 

p(8tx) = tp(x) for t > 0. 

If |$,JC| were strictly monotonie, then |8,JC| = 1 f or a unique value of t. We 
might then define p(jc) to be the reciprocal of this unique t. Although \8tx\ 
need not be monotonie, we have the following: 

PROPOSITION 1-7. There is a positive definite symmetric matrix B such that 

<8,;c> = (8tx}B « (B8tx, 8tx)l/2 

is strictly increasing. 

PROOF. (The following proof was suggested to us by Charles McCarthy.) 

j t (B8tx, 8tx) - y ((BA + A*B)8tx, 8tx). 

Hence it suffices to find a real positive definite symmetric matrix 5, such that 
BA + A*B » I. Clearly 

B • f exp(- tA*)exp(-tA)dt 

does the job. 
In view of Proposition 1-7, we may make the following definition: 
DEFINITION 1-8. For x ^ 0, p(x) is the unique positive f such that <8,-I(JC)> 

" <$-•(*)>* « 1. For x » 0 set p(x) = 0. Clearly for x ^ 0 
x - 8pix)o)(x) 

where <W(JC)> • 1; co(x) is unique. 
REMARK. We shall denote by p*(£) the distance function corresponding to 

the group 8* » exp(ln tA*). Then £ = 5* )̂(<o*(£)) where 

for an appropriate positive definite symmetric matrix 5^ 
The following proposition establishes the main properties of p (and hence 

similarly of p*). 

PROPOSITION 1-9. 
(i) p(8tx) - fp(x), f > 0. 
(ii) p(x + y) < c(p(JC) + p(y))for some c > 0. 
(iii) p(jt) w continuous and is C™ in Rn — 0. 
(iv) cilxp' < p(x) < c2\x\a> ifp(x) > 1, and 

c3\x\a><p(x)<c4\x\a<ifp(x)< 1; 
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here cx, c2, c3, c4, al9 a2, a3, and a4 are positive constants. 
(v) Let us coordinatize Rn by p am/ <o wAere p = p(x) OAK/ CO = 8~lx. Then 

the volume element in Rn is 

dx = pa~ldo)dp 
where do) is a C00 measure on the ellipsoid (5co, <o) = 1, a = Tr v4. 

(vi) TTiere is anri > 0 such that for any] > 0, 

\D>p(x)\ < Cj\9{xf-* 

where D* is a differentiation of order j . 

PROOF, (i) is obvious. To prove (ii) let u = p{x) and v = p(y)9 so x = 
ôww(.x) and j> = 8vco(y). Then for e > 0 and sufficiently small 

<8e/(u+v)(x +y)> = {<««/<«+*>*> + <8e/(M+ü>y>} 

" <8«</(u + t;M*)> + <*»/<« + t7)«O0> 

<«{(îf:)' + (î?;)>-* 
for some positive a. Thus if e is sufficiently small 

<Se/{u+v)(x + y)} < I. 

Thus 

It is clear that p is continuous. To see that p(x) is C00 away from the origin 
apply the implicit function theorem to 

F ( * , 0 - < f i ( ' - I ) * > 2 

(f=-7"5^)l2)-
The inequalities (iv) follow from (1-4). 
To see (v), note 

x = exp(̂ 4 In p)co. 

Let us suppose we are in some region where one of the coordinates of co 
(say o)n) can be expressed in terms of the other n — 1. Then the rows of the 
Jacobian matrix are expressed as follows: 

dx I 9*i *xn \ A , A , v 

and f or 1 < j < n - 1 

where co(y) is a smooth vector function of al9 . . . , <«>„__,. The result (v) then 
follows by taking determinants, (vi) is an easy consequence of the 
homogeneity and smoothness of p. 
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j = 1, 2, 
/«0 

We now describe a group of dilations and a norm function associated to a 
sufficiently large class of smooth curves y{t) with y(0) = 0. 

DEFINITION 1-10. We shall say that a curve y(0 is of standard type if 

Y ( 0 - ( Y i (').••-.Yi.(0) 
where 

Y*(0 - 4 r fA + higher terms, with 1 < j \ <j2 < • • • <.ƒ„. (1-11) 
Jk' 

Let y(0 be of standard type. Then by the dilation group, Sn and norm 
function, p, corresponding to y, we mean those corresponding to the matrix 
A = diagO'i, • . . ,Jn)- y will t>e approximately homogeneous: Namely 
Sh~

ly(ht)~y(t) for small h and /. This means that arguments for homo­
geneous curves will apply to curves of standard type (at least for small t and 
h). Moreover for many purposes it will suffice to consider curves of standard 
type. This fact is contained in the following proposition: 

PROPOSITION 1-12. Let y(t) beaC00 curve in Rn with y(0) = 0such that 

dtJ 

span Rn. Then 

y(0 - nr(0 
where C is a constant nonsingular n X n matrix, and y(t) is a curve of standard 
type. 

PROOF. It suffices to find n vectors, eu ..., eH9 spanning Rn such that 

y ( 0 - Y i ( ' ) * i + - - - + Y « ( ' K 

where the y,(0 satisfy (1-11). To this end, set 

y i - i n f ^ l f W ^ ^ O } , 

and given/j , . . . ,jk,k < n, define 

A+i - inl{j\J >jk and (y^>(0) , . . . , y^>(0), f (0)} 

are linearly independent}. 

We then take ek - ^ ( O ) . 

2. Estimates for trigonometric integrals. §2 contains the estimates for 
trigonometric integrals which are basic for most of this paper. 

THEOREM 1. Let y(0, t>0,bea curve in Rn which satisfies y'(0 = Ay(t)/t 
for some fixed matrix A. Assume {y(0} does not lie in an affine hyperplane. 
Then for 0 < b< d 

ƒ exp{/£.y(0} dt\ < c\\i\\ - i / t 
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where c remains bounded as long as b and d lie in a compact subinterval of 
(0, «.). 

Assume now that the eigenvalues of A have positive real part. Let 8t and 8,* 
be the dilations associated with A and A*, and let p* be the corresponding 
norm function (to 8*) as described in §1. Then we have the following simple 
consequence of Theorem 1. 

COROLLARY. Under the assumptions of Theorem 1 

exp{iè-y(th)}dt\ If <c(p*ôt(Ç)) (2-1) 

for some positive o alii ^ 0, and h > 0. 

(The corollary follows from Theorem 1 by observing that if y'(i) = 
Ay{t)/t, then y{th) - eA 1O* V ) = 8h(y(t))9 and p*(© < c2\%«> if ||| > 1. (See 
Proposition 1-9 (iv).) So 2.1 holds with a » l/a2n.) 

The corollary gives the necessary estimate for "homogeneous" curves. We 
shall need a corresponding estimate for smooth curves. If y is a curve of 
standard type, we let p and 8h be the associated norm function and dilation 
group. (See §1.) 

THEOREM 2. Let y(t) be a curve of standard type. Then 

IX exp{/| • y(th)} dt 
b I W4G») 

(2-2) 

for some positive c and o, provided 0 < b < d < d0 and h < h^ where d0 and 
h0 are sufficiently small. 

The proofs of Theorems 1 and 2 depend upon the following lemma due to 
van der Corput. 

LEMMA 2-3 (VAN DER CORPUT). Let 

\dJf(t)/dtJ\ >\>0 

for some positive integral value ofj and b < t < d. Ifj ™ 1 assume in addition 
that f {i) is monotonie. Then 

rdexp{if(t)} dt\ 
Jb 

< c{j)\-Vj. 

Lemma 2-3 is proved in Zygmund [1959, vol. I, p. 197] for the cases y « 1 
and 2. The lemma for generaly follows by a similar inductive argument. 

PROOF OF THEOREM 1. Let ^(i) = y(e*) so that \p(t) satisfies the differential 
equation i//(0 • A\p(t). By changing variables and integrating by parts, we 
see that it suffices to prove 

IX a <^Tn' (2-4) 

for £ on the unit sphere and X > 0. 
We shall first prove (2-4) under the assumption that none of the matrices A, 
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A2,..., A n have 1 as an eigenvalue. 
Set w(0 = £-iK0- We note that w'(0 = £ * ^'(0 satisfies an nth order 

differential equation; for if 2"«oO,x/ *s ̂ e characteristic polynomial of A, 

i 9 ^ *'(') = £ 9(^v«)-fc 
y-o «^ y*o 

Thus if w'('o) = • • • = w<">(f0) = 0, u\t) = 0. Hence if £ • ip(f0) = 0J - 1, 
2 , . . . , /i, «(/) is constant, contradicting the assumption that y(t) not lie in 
any affine hyperplane. 

Now invoking a compactness argument, we have, under the assumptions of 
Theorem 1, 

$<*•*«)) > c\9 c> 0, 

for |£| = 1, A > 0, and a < t < /?. So Lemma 2.3 will imply 2.4 if we can 
divide the interval (a, /?) into a uniformly bounded (in A and Q number of 
subintervals in each of which d(\£-$(t))/dt is monotone and a particular 
fixed one of the first n derivatives of A£ • \p(t) is larger than or equal to the 
others. Thus it suffices to prove (2-5) and (2-6) below. 

(2-5) M"(0 has only a bounded number of zeros on (a, /?) (i.e. a bounded 
number independent of £ for £ in a compact set), and 

(2-6) The number of zeros of u°\t) - uSk\t) is bounded for a < t < ft, 
1 < j < k < n, and £ on the unit sphere. 

Let \p(t) = (\p\(t),..., ^„(0)- Each ^ ( 0 is the restriction to real t of a 
holomorphic function. If (2-5) were false there would be a sequence {lf 
£2,. •. with |£r| «• 1 such that the number of zeros of £r • i//"(0 is greater than 
r. By passing to a subsequence we may assume £r-»£' for some £' with 
|£'| = 1. Then by the argument principle we would obtain 

That is 0 = (£' • ^^(0 ) = (A*2? • i//(0) = °- T*^ w ü l b e ** contradiction to 
the hypothesis if we can show that A is nonsingular. But if A were singular, 
A*% would be zero for some nonzero £'. Then 0 = £' • ^ ( 0 = f * '̂(0« Thus 
£' • ^(0 would be constant contrary to the hypothesis. 

PROOF OF (2-6). If the number of zeros of u°\t) - u{k\t) were not 
bounded, the above argument would give a £' ^ 0 such that 

«w(/> - u{k\i) = 0. 

Thus 

(f.^(0)=(r^V(0). 
Hence 

(AJ*Ç -Ak*Ç)-xl,(t) = 0. 

Thus 

(from the hypothesis of the theorem). 
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Thus 

A{k-fi*A''*Ç « AJ*Ç. 

Since A is nonsingular A^g is an eigenvector of A^k~^ with eigenvalue 1. 
However we are assuming A k~J does not have 1 as an eigenvalue, giving us a 
contradiction. 

To obtain (2-4) without the hypothesis on the eigenvalue of A, A2,..., A ", 
we make change of variables t = s/v in (2-4), where v >0 is such that 1 is 
not an eigenvalue of A/v, A2/p2

9... 9A
n/vn. Then set i//(0 « M'A)- W e 

have i//(f) « A\p(t)/v. We can now apply the above argument to obtain (2-4) 
with \p replaced by ^, a replaced by av and ft replacée by ftp. Then (2-4) will 
follow by a change of variables. 

PROOF OF THEOREM 2. Assume first y'(0) = 0, so that eachy* > 1. Let 

M = max |4 • hJk\, 

and let k0 be an integer such that 

M = |40H. 
Set 

By Lemma (2-3), it suffices to show that for t < dg and h < h^ the following 
statement is true: 

K*/(0/**°! > M A (2"7) 
PROOF OF (2-7). 

1 < / < * O 

/>*o 

We shall show that the first and third terms above are less than Af/8, while 
the second term is greater than 3Af/4 for t and h sufficiently small. For 
K / < * o > 
Mk«%$k«\th)\ < chJko\^\ - c#'|$|A*"* < chM < M/% if A is sufficiently small. 

Thus 

|^°M^)|>3M/4 
if t and A are sufficiently small. Finally, for I > k0 

\hHiyfaHth)\ < cA l̂f*-***-** 
< cMMA (if A < 1) 

< M/8, 
if / is sufficiently small. This completes the proof of (2-7). 
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If y'(0) ^ 0, we first make a change of variables / = u2, and then we apply 
the above argument. 

3. The a priori L2 estimates. 
(a) The Hilbert transform. Recall that we have called a curve y(t) defined 

for positive / homogeneous if it satisfies a differential equation 

y\t) - Ay(t)/t, t > 0, 

where A is a real n X n matrix such that each eigenvalue of A has positive 
real part. Equivalently, 

y(t) = Ste = cxp{A In t)e, t > 0, 

for some vector e. In defining the Hilbert transform corresponding to a curve 
y(0, we must prescribe y(t) for all real values of /. Of course we can extend 
y(0 to negative values of t by setting 

y(0 = «(-,)ƒ, / < 0, 
for some vector/. The question is now whether we are required to have some 
further relation between y(t) for t > 0 and y(t) for t < 0. We shall see that 
we need to assume 

{^.y(0 = 0,/>0} = {^-y(0 = 0,/<0}. 
We are thus led to the following definition: 
DEFINITION 3-1. A curve y(t) defined for all real / will be called two-sided 

homogeneous if the following two conditions hold. 

Ï8te, t > 0, 
Y(0 = | 8 - J , ' < 0 , (3-2) 

lO, / = 0. 

(Here 8t is a one parameter group of dilations and e and ƒ are vectors in Rn.) 

{HI. y(t) = (U > 0} = {HI • y(0 = 0, t < 0}, (3-3) 

i.e. the linear space spanned by {y(0}/>o= linear space spanned by 
{ y W W 

If y(t) is a continuous curve, defined for e < |/| < N, we set 

^ e , i v / W = r / ( * - Y ( 0 ) f . for ƒ in S. (3-4) 

We shall now prove 

THEOREM 3. (A) Let y(t) be a two-sided homogeneous curve. Then 

II3WÜ2 < C(Y)||/||2. (i) 
Also as e -» 0 and N^>oo, %EyNf converges in L2 to an L2 function %f. 
Furthermore, 

\\%fh < *(y)||/||2. (ü) 
(B) Assume y(t) is a C00 curve such that for small t it lies in the subspace 

spanned by {y^(0)}jLi. Then the conclusions of part (A) hold also in this case 
for %el, when e ->0. 
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REMARK 3-5. The conclusion of Theorem 3 part (A) is false if y(t) satisfies 
(3-2) but not (3-3). 

PROOF OF (A). We first prove part (A) under the additional hypothesis that 
£ • y(t) = 0 implies £ = 0 (i.e. y does not lie in a proper subspace). 

A simple calculation shows that 

O(ö-«u(o/(o 
where 

m, , „ ( £ ) = ƒ exp(-27r/y(0-|) f 

Conclusion (i) is equivalent to the uniform boundedness of meAr(£). A 
homogeneity argument (i.e. replacing £ by fij*($)«*(ö and changing variables 
s = fp*(£)) allows us to assume p*(£) = 1. Then 

IX dt 
«p(-2w#jr(O-0T 

< ƒ | e x p ( ~ 2 7 r / 7 ( 0 - | ) ~ l | f < c(y) 

since |y(/)| < c\t\a for some positive a, near t = 0 (see (1-6)). 
Now for y > 0 

I f «P( -2«#K0-ÖT 

•If exp(-2OTy(2'0-C)^ 
| * ' l < /<2 * 

-If exp(-2my(t)-8l£) ^ «(Y) 

for some 0 > 0 by 2.1. 
Similarly, if 1 < a < fi < la 

II dt *(r) I txp(-2my(t)-£) -
'a<|*|</3 » | « 

Thus adding the terms shows 

K*(0| < '(?)• 
Thus (i) follows. The remaining parts of Theorem 3 (A) are now easy. We 
shall now remove the restriction that y does not lie in a proper subspace. Let 
Vx « {£|£- y(0 = 0}, and set V2 - K,x. Then y(0 is in K2, and for £ in K2, 
| • y(t) = 0 impHes £ = 0. Note that Kj is invariant under .4*. For £ • y(/) = 0 
implies 

£ . y'(0 = 0=» | -^y(0 = 0=>,4*£ • y(/) = 0. 

Thus V2 is invariant under ̂ 4. Let A x be the restriction of A to K2. Then 

Y X 0 - " M ' ) A 
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and each eigenvalue of Ax has positive real part. For x in Rn, let x = xx + x2 
with xt in Vt. Fix xx and let 

3er WW-f ,, /(*i + (*a - T(0)) f • 

Then we apply our previous argument in the x2 variable first, and then 
integrate in xx to obtain the result. 

The proof of part (B) in Theorem 3 is similar. If the vectors y w(0) span Rn
9 

we may assume y is of standard type by Proposition 1-12. The homogeneity 
argument which allowed us to assume p*(£) = 1 has to be modified as 
follows: We divide the integral for mc>1(£) into / < (pfé))"1 and * > 1/pfê). 
We then argue as above using (2-2) instead of (2-1). 

Thus for t0 sufficiently small 

ƒ exp(2^-y(0) f 
'I'I<I/P(9 
\*\<h 

< ƒ |exp(2^ • y(0) ~l\ê<c± |$| ƒ , / p ( V " ' dt 

l'l<'o 

<c± ||,|(p(|))^<c. 
y - 1 

Now let Tf be a small number depending on y, and let t0 be a small number 
depending on y and TJ. Then if 1 < a < ft < 2a, 

JaMQ*\t\*fiMQ t 
I'K'o 

ƒ expf2OT|.y(/J-)] f 
:M</»/« 

l'l<'oP«)/« 

ƒ e x p [ 2 „ * . y ( l , - y ] f 
\t\<rit0p(0/a 

va* 

if i] is sufficiently small and t0 is sufficiently small (since a/p(Ç) < t0). Having 
fixed tçp 

ƒ exp(2^-y(/)) f < c. 

The proof when y^O) do not span Rn then is completed as in part (A). 
PROOF OF REMARK 3-5. Let 
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U= {£\£-y(t) = Ofort>0} and 

K = { € | { - y ( 0 - O f o r f < 0 } . 

Assume there is a £ in U, so that £ is not in V9 and take |£| = 1. Then 
£ = £, + £2 with £1 *n V and £2 in F x . The arguments proving Theorem 3 
part (A) then show 

and 

If exp[2OTy(0-|] f 

Iƒ exp[2«y(/).{] f 

< C, 

dt 
< c. - ƒ exp[2OTy(0-|2] f 

On the other hand clearly 

f"exp(2my(t)-£) f = logeN, 

and so mlN (£) is unbounded as N -» 00. 

(b) 77ie Maximal function. Let y(0 be a continuous curve defined for t > 0. 
For ƒ in S we set 

%ƒ(*) = sup I ( * ƒ ( * - Y ( O ) * 1 

A>0 " \J0 I 

?&,ƒ(*)- sup 1 \(hf(x-y(t))dt 
\>h>0 n \J0 

, and 

Here we prove, 

THEOREM 4. (A) Let y(t) be homogeneous'., then 

IWII2 < t(y)||/||2. 
(B) Let y(t) be C°°. Assume an initial segment of y{t) lies in the subspace 

spanned by (y^O)},0!,. Then 

I|9R,/II2<C(Y)||/||2. 

The crux of the proof of Theorem 4 are estimates for appropriate g-
functions which we state as a separate theorem. First some notation. We set 

l r2h 

h 
We let <(> be a C0°° function with <J>(0) = 1, and 

<>,(x) = (det5,)-1<|>(5A-,4 
for the appropriate dilation group 8h. If y(f) is homogeneous and ƒ is in S, we 
define g(f)(x) by 

*/ƒ(*) = ! ƒ '*ƒ(*-Y(0)*-
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g2fW = 1°° f W<*> " *» * / (x )l2* 
where the underlying group of dilations is the obvious group associated to 
y(t). If y(/) is of standard type and ƒ is in S, we define 

Here the underlying group of dilations is that associated with a curve of 
standard type. (See §1.) 

THEOREM 5. (A) If y is homogeneous and y does not lie in a proper subspace 
ofR\ 

UU)h < c(y)||/||2. 
(b) Ify(t) is of standard type 

\\8i(f)h<c(y)\\f\\2. 

We shall first see how Theorem 5 implies Theorem 4. Here we shall restrict 
our discussion to part (A), the argument for part (B) being analogous. Using 
an argument in the proof of Theorem 3, we may suppose that y does not He in 
a proper subspace of Rn. We may also assume ƒ > 0. Now 

e>0 

So by Schwarz's inequality 

g2f{x) > sup I f \NJix) - 4>h * f(x)\2 dh. 
e>0 € •'O 

inequality 

g(f)(x) > sup i f \NJ(x) - <f>h * ƒ[ dh. 
€>0 

Thus 

sup i f |7V(x)| dh < g(f)(x) + sup |fc * f(x)\. 
e>0 e JQ h>0 

Also since ƒ > 0, 

i /; JVM &-{ƒ;{ jfa* - T«) * * 

Hence, taking the supremum in e, we have 

%Kx) < c(g(f)(x) + sup ^ * ƒ(*)). 
V h>0 ' 

Now || g(f)(x)\\2 < c|| ƒ||2 by Theorem 5, and 

l | s u p ^ * / | | 2 < c | | / | | 2 (3-5') 
h>0 

by standard arguments; see e.g. Theorem 2.3 of Rivière [1971]. (The VitaH 

file:///NJix
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family can be taken to be Uh = {*|p(;c) < h}) Thus 

IWII2 < c\\f\\2. 
We now turn to the proof of Theorem 5. Consider part (A). 

Ils(/)ll! - JH f W(x) - * ./(*)É 

- f f 11^(0-^(1)11. 
Now ^ * 7 ( ö = £(ô*(0)ƒ(£), and a simple calculation shows 

where 

«(£) = ( exp(-2«{-y(/))df. 

Thus 

\\g(f)\\l - ƒ I ƒ (9P jT N « 0 - #(«;0I2 * * 

Hence it remains to show 

G®~f" it W5^)-<kW 
is uniformly bounded. 

Writing £ =•= ô**(£)<o*(£), and changing variables, we see G(|) = G(to*(|)). 
Thus we may assume p*(|) - 1. As <J>(0) = 1, \n(8gQ - *(«j?öl < ch° for 
some positive a. By (2-1) 

|«(8^)| < c/h' 

for some a > 0. Also 

Hence Theorem 5 part (A) follows easily. 
Proof of part (B). Arguing as above, it suffices to show 

(K(ö-*(Wf<«. (3-6) 
where 

mh{i) = ± J exp(-2wi{ • y(/)) <fc 

- f2 exp( - 2wiÉ • y (/A)) dr. (3-6a) 

In the integral (3-6) only the part where h is small is critical. If we divide that 
part into two further parts (where h < l/p(£), and h > l/p(£)), we see that 
(3-6) follows easily from four estimates 
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| l -«h(0|<c 2 **!&!, (3-7) 

I I - * ( « * ( Ö ) I < « i **iu (3-g) 
|«ft(0)| < c f t ( | ) | - and (3-9) 

K(o l<c | ** (0 | - (3-io) 
for small A and for some a > 0. (3-7), (3-8), and (3-9) are easy; and (3-10) 
follows from (2-2). 

(c) Maximal Hilbert transforms. Let y(t) be a continuous curve. For ƒ in §, 
set 

and 3CV(*) - sup ƒ ƒ(* - y(0) f 

%ffW- sup If / ( x - y ( O ) f I. 
o<:<i I ^ < " l < ' ' ' 

Then we have 

THEOREM 6. (A) Let y(t) be a two-sided homogeneous curve, then 
II9CVII2 < c\\f\\2. 

(B) Le/ y(0 be in C°° in [— 1, 1]. Assume an initial segment ofy(t) lies in the 
subspace spanned by { y ^ O ) } ^ . Then 

IW/lb < 'll/ll* 
PROOF OF THEOREM 6. Consider first part (A). We shall assume that y(t) 

lies in no proper subspace. The removal of this assumption is as in the proof 
of Theorem 3. For ƒ in S, we set 

Clearly 

with 

%J(*) = L / ( * - Y ( ' ) ) f . 

m , © - / exp{-2«{-y(0) f 
J\t\>\ ' 

We let ij(£) be in C0°° with TJ(£) identically one for £ near 0. 
We shall define a g-function in terms of an operator %^ given by the 

formula 

<ƒ(£) - (i - iKtfOHŒK)/ (9- (3-11) 

(The fact that ^ ƒ vanishes near £ « 0 will be especially convenient later 
when we deal with the Lp theory.) We set 
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•°° dX 

Using arguments similar to the proof of Theorems 3 and 5, we see that 

Now 

where 

n*a)ii2<cii/ii2. (3-12) 

(3-13) 

E(x)=f\(x-y(t)) f . 
(•q\(x) = A-Y(V*)> and Ex(x) = X^E^x).) Now 

l*(*)l <ƒ_', hf (* ~ r(0) - i"(*)l f 

for any a. 
(1 + \x\') 

The same estimate is true for if. Thus by (3-12), (3-13), and Theorem 3 
(arguing as in the proof of Theorem 4), we obtain 

sup 

sup 
h>0 

So by Theorem 3 

|SUP|1 f f ƒ(*-*(')) f A 
||/i>0 I * •'O '\t\<\ t 

or interchanging the order of integration 

|/>-<'»(u»f 
Hence by Theorem 4, 

< c||/||2. 

< c||/||2; 

< c\\f\\2. 

sup 
h>0 

jh_ Ax - r(/)) f < c||/||2. 

This implies Theorem 6, part (A). 
To prove part (B), we can assume y(t) is of standard type. Then we make 

the following modifications: We set 

%J(x) = [ ,, / ( * -Y(0) f -
Then 

where 
3^(0-^(0/(0 



« sup 
0<\<\ 

» sup 
0<A<1 
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mx®=( exp(-2^-Y(0) f . 
•'A<|<|<I « 

We define $*ƒ by 

C?(0-0-n(«xOH(ö/(0 

where 8X is the dilation group corresponding to y (see §1). We set 

One proves 

II*(/)II2<C||/||2 
using modifications already used in the proofs of part (B) of Theorems 3 and 
4. The remainder of the argument follows by a simple modification of that 
proving part (A). (However instead of dealing with Ex as above we must 
observe that 

{ J? flx *"[*"* " ^ M ] " '"ft"'*] 7 } *\ 

< Cmsap TZ — ,1 , ,.« * l/l 
x>o A [1 + |5A-^|] 

for any a > 0; and this term is bounded in 1? by the argument which proves 
(3-5').) 

(d) Maximal spherical averages. Here, for ƒ in §, we put 

MJ(x)-f f(x-ty)do(y) 

where da is the rotationally invariant measure of total mass 1 on the unit 
sphere. We put 

%f(x) - sup \MJ(x)\. 

We then have 

THEOREM 7.1fn> 3, 

\\%fh < c\\f\\r 
PROOF. It is well known that 

where 
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m(0 = 2»/2- ,r(«/2)(2^|||)-'' /2+,/„ /2_I(2w | | |).7 

To prove Theorem 7, we shall need to consider additional operators Mf*. 
For/in S, we set 

^ ( | ) = m a (^) / ( | ) , 

where 

m0(|) - 2"/2+«-1r(„/2 + a)(27r|||)-n/2-"+,/ (, /2_1+a(2 f f | | |). 

To prove Theorem 7, we would only need to consider real a's, but we shall 
need to consider complex a's when we deal with Lp versions of Theorem 7. 

We shall not prove Theorem 7 directly by the use of g-functions, but 
instead we shall use g-functions to discuss 911 *ƒ, where 

7 ['\Ms«f(x)\2ds\ . 

THEOREM 8. For a > 1/2 - n/2 

ll^Vlb < *a||/||2. 
Moreover if a is in a compact subinterval of (1 /n — n/2, oo), ca is bounded. 

We shall then use Theorem 8 to prove the following strong form of 
Theorem 7: 

THEOREM 9. Let 

Wf(x)-mp\Mff{x)\. 
*>o 

If Ra > 1 - n/2, 

II W l b < '«Il/II* 
Moreover, if Ra is in a compact subinterval of (1/2 — n/2, oo), then 

log |cJ<c[ l + |a| log|a|] . 

The fact that Theorem 8 implies Theorem 9 is a consequence of the identity 

Mff(x) - c(n, a) Ç M«f(x)(l - s2)a~a'~ V*2*'"1 ds (3-14) 
•'o 

whenever Ra > Ra' and Ra' > - n/2, with 

c(n, a) = 2V(n/2 + a)/ {T{n/2 + a')T(a - a')). 

(Upon taking Fourier transforms (3-14) is seen to be equivalent to the 
identity 

(2^1^|)-"/2-a+1/w/2-,^(2^|C|)= *a T a ' 0 

•f' (2H£|)-"/2-«'+,/„/2_1+a,(2HÉ|)(i - 5 2 y " ' -V-^ ' - 1 A, 

which is essentially equation 5, p. 46, vol. 2 of Erdelyi et aL [1953].) Now an 

7 See e.g. Stein and Weiss [1971, pp. 154-155]. 
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application of Schwarz's inequality in (3-14) shows that Theorem 8 implies 
Theorem 9. 

Theorem 8 in turn follows easily from the L2 boundedness of an 
appropriate g-f unction. As usual we let <£ be a C0°° function with ^(0) = 1. We 
set <j>t(x) = t~H$(x/t)9 and 

&(ƒ)(*) = { f~ \M?f{x) ~ / * *,(*)? f } • 
We then have 

THEOREM 10. If a is real and a > 1/2 - w/2, 

H&(/)ll2<'J/ll2. 
Moreover ca is bounded if a is restricted to lie in a compact subinterval of 

(1/2 - n/2, oo). 

PROOF OF THEOREM 10. Using ParsevaPs theorem as in the proof of 
Theorem 5, the proof of Theorem 10 comes down to the estimate 

j H !««(,$)-*(/öl2 f <c„ (3-15) 

for | | | = 1. 
Since ma(0) = <J>(0) = 1, the portion of the integral t < 1 in (3-15) is easily 

seen to be bounded. To deal with the contribution for large t, we note 

\mM)\ < c a /-"/2-«+ 1 /2 

where ca is bounded if a is restricted to a compact set. 

4. A priori LP estimates for the Hilbert transform. Our main goal here is the 
following theorem: 

THEOREM 11. (A) Let y(t) be a two-sided homogeneous curve. Then for f in 
s, 

II9WII, < C(P> Y)II/IU» KP <oo. (i) 
Moreover %ttNf converges in Lp to %f, as e -*• 0, N -* oo, and 

\W\\p<C(p,y)\\f\\p. (ii) 

(B) Let y(0 be a C00 curve on [ - 1 , 1]. Assume y(t) lies in the subspace 
spanned by {yo\0)}jLv

s Then conclusions analogous to those of part (A) hold 
for%€A. 

PROOF OF PART (A). It suffices to prove (i). We assume first that y{i) does 
not he in a proper subspace of Rn. We consider an analytic family of 
operators TJ defined by 

©(0-{p*(0}*"i(0/(0. 
where 

It suffices of course that this condition on y(t) be satisfied in any neighborhood of f « 0. 
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« , ( 8 - / exp{-2^-y(0}|/r4' 

Our object is the inequality 

\\Tof\\p < Ap\\f\\p. (4-1) 

By duality, we may assume 1 < p < 2. Then by the analytic interpolation 
theorem, Stein and Weiss [1971, p. 205], it suffices to prove the following two 
lemmas: 

LEMMA 4-2. There is a positive a such that 

\\TJ\\2<C(z)\\f\\2 

for — a<Rz<a9 where C(z) grows at most poly normally in\z\. 

LEMMA 4-3. For an arbitrarily small positive number TJ, and suitable /? 

||7^||#<C(z,jp)||/||/> K / X o o , 

for — ft < Rz < — •»]. Moreover for r) fixed, C(z) grows at most as fast as a 
polynomial in\z\. 

(There is one slight technical point to be mentioned. We prove Lemmas 4-2 
and 4-3 for ƒ simple. This will give (4-1) only for ƒ simple. However for any ƒ 
in S, we can easily find simple functions fn such that ƒ,-»ƒ in Lp and 
%eNfn _» %tNf in L

P, which will give (4-1) for ƒ in §.) 
The proof of Lemma 4-2 is essentially the same as the proof of Theorem 3. 
To prove Lemma 4-3 we need an additional lemma. 

LEMMA4-4. For -a < Rz < 0 

{p*(£)}*= h2® 

where h2(x) is a locally integratie function, C°° away from the origin satisfying 

hz(8xx) = \-*-%(x)9 X > 0 , x^O. 

Moreover each derivative ofh2(x) is bounded by a polynomial in |z|, ifp(x) = 1. 
(Here a =* trA, and the Fourier transform is to be taken in the sense of 
distributions.) 

PROOF OF LEMMA 4-4. Let <f> be in C0°° with <J>(£) = 1 in a neighborhood of 0. 
Then 

[p*(o]'- m[p*®]z+ (i - m[p*®]2 

= rx(C) + r2(è). 

r,(|) has compact support and is thus the Fourier transform of a C°° function. 
But if bx, bly..., bH are any nonnegative integers, and /? is a sufficiently 

large positive integer 

(See Proposition 1-9 (vi).) Thus 
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\X M. 
)»i+ — + V 2 ( x ) 

dx{> • • • dxp 

is continuous. We define hz{x) to be the distribution such that 

£(0-[P*(9]*. 
Then the above discussion shows 

with w2(x) in C00, t>z(jc) a linear combination of 5-functions and derivatives of 
8-functions supported at the origin, and wz(x) is in C°°(Rn — 0) and is locally 
integrable. 

Now 

p*(8fâz= *2P*(£)> * > 0. 
This implies 

hz(8xx) = \~a~%(x) (as distributions). 
Then we see that 

u2(Sxx) + wz(8xx) - X — * t e ( * ) + w,(x)) 
by operating on functions vanishing near the origin. Thus 

v2(8xx) = \-°-%(x). 

Since Rz > 0, and t>z is a linear combination of 5-functions and their 
derivatives then vz = 0. We turn now to the proof of Lemma 4-3. By Lemma 
4-4, we see that 

TJ(x) = Kz * ƒ (4-5) 
where 

* ( * ) - ƒ , , M^-Y(0)Mzf (4-6) 
for ƒ in S. It follows easily that (4-5) holds when ƒ is simple. 

We shall now show that for sufficiently large constants C and Cx(z) 

L \Kz{x-y)-Kz{x)\dx<Cl{z). (4-7) 
p(x)>Cp(y) 

If — a < Rz < — TJ < 0. Moreover C,(z) can be taken to be at most of 
polynomial growth in \z\. (4-7) will establish Lemma 4-3 by virtue of Theorem 
4.1 of Rivière [1971]. (The regular Vitali family (f/a, $a) is given by 

Va - {*|P(*) < «}• 
<Pa = Cxa provided Cx > 2C, C being the constant of Proposition 1-9 (ii).) 
To prove (4-7), we note first that a change of variables x = 8p{y)x' and 

t = $p(.y) allows us to assume without loss of generality that p(y) = 1. By the 
homogeneity of h and the smoothness of h away from 0, we have 

\hz(x - <o) - hz(x)\ < C(z) ' 1 ^ (4-8) 
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for some ft > 0, provided |<o|/|x| is sufficiently small. We then set 

Kz(x) = K2
i(x) + K2

2(x), 
where 

Then 

*•(*)-ƒ it M* - y(0)l'l* f 

\K;(X)\<( \h,(x - y(0) - *(*)| W f 

So using (4-8) and Fubini's theorem, 

ƒ \Ki{x)\dx<( r & - ' f |A,(x-T(/))-A,(*)|<fc<ft 

< C(z)f i*-l\y{t)\ ƒ {fa)}—"'"** < Cx(z) (4-9) 

if i?z is sufficiently close to zero by (1.6) and Proposition 1-9 (v). 
A similar argument shows 

ƒ \K}{x-y)\dx<C{z). (4-10) 

Finally 

ƒ \K?(x-y)-K?{x)\dx 

< ƒ r1*"* ƒ |A,(* - y(/) - ƒ) - A,(* - y(0)l & & 

We divide the inner integral above according to whether p(x - y(/)) > C2 or 
p(x - y(0) < C2 for an appropriate large constant C2. The portion where 
p{x - y(0) > C2 is uniformly bounded by (4-8). The portion {x\p(x - y(0) 
< C2} is uniformly bounded since hz is locally integrable. 

We thus have 

ƒ \Kz\x - >>) ~ *2
2(x)| * < C3(z). (4-11) 

Now (4-9H4-11) give (4-7). 
As usual there is little trouble in removing the assumption that y(f) does 

not lie in a proper subspace of Rn. 
There is little extra difficulty in proving part (B). One first notes that it 

suffices to consider the case that y(t) is of standard type. We then define Tz 
as in the proof of part (A), where p is the norm function associated to a curve 
of standard type as in §1. (Except, of course, the integral defining mz(£) 
extends only from e to 1.) The proof of the analogue of Lemma 4-2 follows by 
the same reasoning as that of Theorem 3 part (B). To prove the analogue of 
Lemma 4-3, we shall verify (4-7) with 
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' / € < | / | < 1 • 

where Rz is slightly negative and hz is the function of Lemma 4-4. The 
argument above giving (4-9) now yields 

ƒ \K2(x)\dx<C(z) 

if C is sufficiently large. Thus if p(y) is bounded away from zero (4-7) is 
easily verified. We therefore consider the case that p(y) is small. We set 
x = 8piy)x' and / = sp(y) (in the integral defining Kz) to obtain 

\Kz(x-y)-K2(x)\dx 
>Cp(y) 

ƒ 

=f \f W {Mx'-y-siMy)y(sp(y))] 
Jp(x>)>C\JeMy)<s<\My) i *L ' V P O ^ V FV-^J 

<fc'. 

We next divide the s integral according to where s < 1 and where ^ > 1. 
When s < 1 we utilize the argument establishing (4.9). (For this portion of the 
integral we use the fact that |51 / p ( y ) y(sp(y))\ < C\y(s)\. Finally, the contri­
bution from s > 1 is handled by the argument proving (4-10).) 

5. A priori Lp estimates for the maximal function. Here we extend the 
results of §3(b) to LP spaces with 1 < p < oo. We prove the following 
theorem: 

THEOREM 12. (A) Ify(t) is a homogeneous curve and f is in § then 

IWII, < C,\\f\\p, Kp<*>. 
(B) Let y(t) be in C00. Assume y(t) lies in the subspace spanned by 

{yuX0)}«Lx.ThenforfinS9 

11%f\\p < Cp\\f\\p, Kp< oo. 

PROOF. By the Marcinkiewicz interpolation theorem and the fact that the 
result is trivial when/? = oo Stein-Weiss [1971, p. 184] we only need deal with 
the case 1 < p < 2. 

We consider first part (A). As usual we first assume y(t) does not lie in a 
proper subspace of Rn. (This restriction can be dropped by an argument used 
in the proof of Theorem 3.) As in §3 (b), we set 

^ ( x ) = l ƒ**ƒ(*-*('))*• 
Using part of the argument of the proof of Theorem 4, we see that it 

suffices to show 

llsup \ fHNJ(x)ds 
\\h>0 n J0 

< Cp\\f\\p (5-1) 
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for ƒ > 0 in S. As pointed out in §3 (b), 

JV(£)=/(£M^) 
where 

"2 
/*(£)=ƒ exp(-2m£-y(t))dt. 

Let r)(0 be in C0°° with ij© = 1 for £ near 0. We then define A/^for ƒ in S, 
by 

fit® - V(8fön(8föf (Ö + P ^ ö ( l " H(«;0)it(«;0/ (€)• (5-2) 

Further, we let <|>(x) be in C0°° with <J>(0) = 1, and set 

&(ƒ)(*) = {/0°° f !*#(*) - *k •/Wl2} 
1/2 

Then an argument analogous to the proof of Thoerem 5 yields 

ll&(/)ll2<C(z)| | / | |2 (5-3) 

for Rz < a, where o is as in (2.1). Moreover C(z) grows only as fast as a 
polynomial in \z\ if R (z) lies in a compact subinterval of (— oo, a). 

The argument of Theorem 4 then gives 

LEMMA 5-4. If-o/2<Rz< a/2 and f in S 

^ / o " W ^ ( x ) ^ | < C ( z ) | | / | | 2 

II * C 
for any positive measurable function h(x). Moreover, we can take C(z) so that 
it grows at mostpolynomially in \z\. 

We shall also show 

LEMMA 5-5. There is a a2> 0 such that if0<al<a2 and -o2 < R(z) < 
— ax 

1 — fh(x)Nzf(x)ds 
h(x) J0 ^ W " < Ç toll ƒ IL. K /Xoo, 

for every positive measurable function h(x). Moreover if ax is fixed Cp(z) may 
be taken so that \Cp(z)\ grows at most like a polynomial in |z|. 

Lemmas 5-4 and 5-5 will imply (5-1) (and hence part (A) of Theorem 12) 
by analytic interpolation provided we overcome the following two technical 
points: 

(a) Lemmas 5-4 and 5-5 hold only for ƒ in S and not for simple functions 
as the interpolation theorem requires. 

(b) The transformation 

f-W) O ? W W * 
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must be shown to be analytic in the sense required by the analytic inter­
polation theorem. 

We deal with the first difficulty by letting $e be an approximate identity 
and considering 

1 
l-T&C!U'W 

It is easy to deal with (b) if h(x) takes only a finite set of values. This 
clearly suffices for ƒ in S. 

To prove Lemma 5-5 we need the following lemma due to F. Zo. 

LEMMA 5-6. Let Kh(x) be in Ll for h > 0. Assume 
(i) /|A^(JC)| dx < C < oo for h > 0, and 

© Sp{*)>cp{y) supA>ol*i(* - JO - **(*)! dx < c -
Set 

3Ç/(*)-8up \Kh*f{x)\. 
h>0 

Then 

\W\\P < A,\\f\\p, K / K o o . 

i4&ö y4p depends only on C. 

(Zo's lemma actually also includes the weak type 1,1 conclusion, though we 
shall not use it here. See Zo [1975] for the general case or Zo [1977], where 
however only the case p(x) = |JC| is considered.) 

Lemmas 5-6 and 5-4 will imply Lemma 5-5 modulo some trivial terms. The 
crux of the argument is contained in the following lemma: 

LEMMA 5-7. Let \p(t) be a C™ function defined for 0 < t < oo, vanishing near 
0. Let À be a positive number with X < a, but sufficiently close to a. Define 

h {P(*-Y('))} 

Then Kh{x) = h aK(8h
 lx) satisfies the hypothesis of Lemma 5-6. 

PROOF OF LEMMA 5-7. Condition (i) is trivial. So we need to prove condition 
(ii). By homogeneity we may assume p(y) = 1. Now 

^ W = * ^ ( { P W ) ( 
dt 

{p(V'* " 7(0)} 

V« )Jh {p(x-y(t {p(x - y(t))}X * 

Thus 
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\K>{x -y) - K,(x)\ < *»—• {|+( | p(x-^)) -*(ip(x))|J 

r 
Jh 

dt 
J» [p(x-y-y(t))f 

p(x) \ f2h 
y \ h j)h \p\x-y- Y(0) PX(X ~ y(0) 

dt. 

Since \p(t) vanishes near 0 and oo, p(x) must be between two multiples of h 
or Kh(x - y) - Kn(x) = 0 (at least if p(x) is large and p(y) - 1). Thus for 
p(y) = 1 and p(x) large, 

sup \K„(x -y) - Kh(x)\ 
*>o 

Cipix) 
< C{p(x)}x-"-2\p(x - y) - p(x)\ fC2PiX 

JC,p(x) 

+c{p(x)r"-i[cMx 

Thus for sufficiently large C 

ƒ sup\Kh(x-y)-Kh(x)\dx 
Jp(x)>C h>0 

<Cf <*—'/" -Lr 
Jt>C3 •'C4l<p{x)<Cit P W 

dt 

{p(x - y - y(t))} 

1 
p\x-y-y(t)) p\x-y(t)) 

dt. 

1 \p(x -y)- p(x)\ 
dxdt 

+ Cf /x-'-a f 
Jt>C}

 JC4t<p(x) <C5t 

{p(x-y-y(t))Y 

1 1 
px(x-y-y(t)) px(x-y(t)) 

Hence to prove Lemma 5-6, it suffices to show the following two facts 

\p(x - y) - p{x)\ 

dxdt. 

ƒ »c6 p(x)px(x - u) 

for sufficiently large C (for all u) and 

1 1 

dx < C (5-8) 

ƒ dx < C, (5-9) 
pA(;c — y — u) px(x — u) 

for sufficiently large C. 
Since P"~A(JC) is locally integrable, (5-9) follows from the following 

inequality: 
If (o is sufficiently large and p(y) = 1, 

| p a ( ( o - ^ ) - p « ( ( o ) | < C p ^ ( ( o ) 

for any a and some positive /i, and this follows from Proposition 1-9 (vi). 
Using the above inequality again we see that to prove (5-8) it suffices to 

show that 

file:///p/x-y-
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f fp(*))~V~X(* - u)dx < C, 
Jp(x)>CK 

for a fixed e > 0. We may assume p(ü) > 1 since if p(w) < 1, the inequality is 
trivial. We now break up the region of integration into parts p{x - u) < 
p(x)/10, and p(x - u) > p(x)/l0. The second integral is majorized by 

c[ [p(x)Ve~Xdx< C. 

In the first region, p(x) « p(w), so the corresponding integral is majorized by 

{P(")}"7 P~A(*) dx < C(p(«))-e+a"A< C. 
•'p(*)<cp(f0 

It remains to discuss the reduction of Lemma 5-5 to Lemmas 5-6 and 5-7. 
From (5-2), we have 

WW - U£ *f(x) + Lh * ƒ(*) (5-10) 

^(0-k(0]'0-n(OM^ 

£ ( * ) - ^ V ( * - Y ( 0 ) * -

where 

and 

Now 

So 

supLA*fl < Ç||/||,, K / X o o . 
h>0 »/> 

(Again this follows by standard arguments as in Theorem 2.3 of Rivière 
[1971].) 

Using Lemma 4-4, we have f or - a < Rz < 0, 

U'(x)-f\'(x-y{t))di 

where vz has the following properties: 

\v'(x)\<C{z)/[p{x)y+\ x large, (i) 

|o*(x)| < C(z)/[p(x)] f l+/?r, jt small (ii) 

(C(z) as usual denotes an expression that grows at most as fast as a 
polynomial in \z\). 

Finally we choose \p(t) in Co°(0, oo) vanishing near 0 with i/>(f) = 1 for 
bx < t < b2 for appropriate bx and b2. Then 
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U*(x)<C(z)t(p(x))[ — 
Jl {p(*- r (0 )} 

a + Rz 

c(z)(i - ,Kp(*)))Jj V ( * - y('))\dt. 

The first term above can be treated by Lemmas 5-5 and 5-6, while the 
second term is dominated by C(z){l + p(x)}~a~l. Thus, we see 

|sup Uh *j\\ < C(z)\\f\\p9 l<p<oo. (5-12) 

Combining (5-12), (5-11), and (5-10) we have Lemma 5-5 and the proof of 
part (A) of Theorem 12. 

The proof of part B is very similar to the proof of part (A). One defines Ntf 
by 

jgf(0 = y\{8hi)mh{i)f (£) + (1 - n(**0)Px(0^(o/ (0 
where 

1 r2h 

™h(£) = jjh exp(27T/| • y(/)) dt. 

(See (3-6a).) Then 
1/2 

&(ƒ)(*) - {f0
l f |*ff(*) - «» */Wl2} . 

The estimate 
II«^II2<C(Z)||/||2 

follows the lines of Theorem 5 part (B). The rest of the argument of Theorem 
12 part (B) follows the lines of part (A). 

6. A priori LP estimates for the maximal Hubert transform. In this section 
we shall deal again with %*f(x) and %*f(x)9 defined in §3 (C). We shall 
prove 

THEOREM 13. (A) Iff is in § and y is two-sided homogeneous, 

II3CVII, < 411/11,, K / X O O . 

(B) Assume that for small t9 y(t) lies in the subspace spanned by {y°\0)}jL\. 
Then 

\\%*f\\P < Ap\\f\\p9 Kp <co. 

We consider first part (A). Again, by an argument used in the proof of 
Theorem 3 we may assume that y (J) does not lie in a proper subspace of Rn. 

We shall consider an appropriate analytic extension $t£ of the operator %^ 
defined in §3(C). %f will be defined for ƒ in § by 

^(9-m*(flö/(9 
where 
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m'® = (1 " l(0)[p*(9]' ƒ «p{« • Y(0}k|z f • 

Again rj(£) is in C0°° and rç(£) = 1 near £ = 0. 
The argument of §3 (C) gives 

LEMMA 6-1. For some /? > 0, and -ft < R(z) < /?, 

I fx 

\\>o ^ Jo ||2 

for f in S. Moreover C{z) may be chosen so that \C(z)\ grows at most as fast 
as a polynomial in\z\. 

We shall show 

LEMMA 6-2. For some ft > 0, ifO < ftx < ft 

| | s u p ^ | <C(z) | | / | | , , K / > < oo, 

/or —/? < /?(z) < — ft. C(z) «5 wswtf/ awi be taken so that \C(z)\ is 
dominated by a polynomial in\z\. 

Modulo technical difficulties encountered in §5, we will then have 

1 sup %j\\ < C(p) H/H,, 1 < p < oo. (6-3) 
» A>0 »p 

These difficulties are treated as they were in §5. (6-3) will imply Theorem 
13 part (A) by the argument used in §3 (C). 

The derivation of Lemma 6-2 is similar in spirit to that of Lemma 
5-5-namely to show that modulo trivial terms Lemma 5-6 applies. We shall 
content ourselves with a brief sketch of the argument. 

First an application of Lemma 4-4 shows 

%f(x) = Lx*f(x) 

where 

L(x)=( /(x-y(O)kff; 

and l(x) has the following properties: 
(i) |/(JC)| < Ca(jc)|x|~a for any a > 0, for large x and large a. 
(ii) l(x) is C00 away from 0. 
(iii) |/(*)| < C(z)/[p(x)r**. 
Thus to prove Lemma 6-2, it suffices to show 

I sup Qh •ƒ(*)! < 411/11,, 1 < p < oo, (6-4) 
»h>0 »/> 

where 

•wi [pc* - Y (o )r ' 
here #(JC) is in C00, and for any positive a, 
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fctol < Cj\x\". 
We choose a function \p(t) in C0°°[0, oo], vanishing near 0 such that 

i//(0 = 1, for bx < / < b2. bx and b2 will depend on y as explained below. 
We write 

e(*) -2 q.(*)+2 K(*)> 

= I/(x) + V(x) 

where 

q , w - ^ 2„ jj2„<ul<2„+1 [p(x _ m].-fi
 dt-

and 

If £, is sufficiently small and 62 sufficiently large, 

\V„(x)\<-r ^ 7 f |̂|—̂—* *s«r 
V " [ l + p " ( x ) j •'2«<|«|<2'+' 

for any a > 0. Thus 

F(*)<2|F.(*) |< [l+p°(*)]* 
and 

|sup KA *j\\ < ^ll / l l^ l < / > < oo. (6-6) 

Choose e > 0 such that a > /? + e. Then Ç(JC - y(0) < P~e(* - y (OX s o 

".<*) < 4 ^ ) ƒ +1 W* - ?(<))f'""M-'-' * 
\ ^ /• /2' ,<|f|<2' , + l L J 

- 2^ne2'naW(82-nx) 

where 
W(x) = ^(p(x))ƒ [P(* - y(t))]fi—a \t\-e-1 dt. 

« /1<|/|<2 L J 

Now 

| s u p | ^ * / | | < ^ll/ll,, 
"A>0 "p 

as this is the same as the kernel treated in Lemma 5-7. So 

file:///t/-e-1
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| | s u p | £ W | | < | 2 - H | s u p | ^ 2 - ^ * / | | 

< 2 2—II sup | * * W | | 

<G«, | | / | | , , K / X o o . (6-7) 

Now (6-5>-(6-7) imply (6-4). This completes the proof of Theorem 13 part 
(A). The modifications necessary for part (B) are analogous to those used in 
previous sections. We omit the details. 

7. A priori Lp estimates associated to spherical means. In this section we 
extend the results of §3 (d) to values of p > 1. We use the notation indicated 
there. 

THEOREM 14. Let f be in § . The inequality 

m\\P<Apjf\\p 

holds in the following circumstances: 
(a) If 1 < p < 2, when a > 1 - n + n/p 
(b) If 2 < p < oo, when a > (2 - n)/p. 

If a = 0, this means n > 3,p > n/(n - 1). 
REMARK. Let 

/(x) = (i*r+,(iog(i/w))-', \x\<i 
[ 0, otherwise. 

Then for all sufficiently small y, the spherical average of ƒ on the sphere of 
radius | j>| is oo. Thus 9IL° is unbounded in Lp Up < n/(n - 1). If AÏ * 2, it is 
unknown whether 9IL0 is bounded in Lp for 2 <p < oo. Simple examples of 
the same kind also show that the result (a) above is sharp ifp < 2. 

Theorem 14 will follow by the analytic interpolation theorem (see Stein 
and Weiss [1971, p. 205]). We shall use Theorem 9 as an L2 result, and 
Lemma 7-1 below as Lp and L00 results: 

LEMMA 7-1. 91ta is bounded on L°° ifR(a) > 0 and on Lp,for every p > 1, 
when R(a) > 1. Moreover ifR(a) lies in a compact subinterval of (0, oo) 

log||9R,«|L < C(a), 

and if R(a) lies in a compact subset of (I, oo) 

log||9IL«|| / ,<C(a)/(^-l), 

where C(a) grows at most as fast as a polynomial in |a|. 

Lemma 7-1 is a consequence of the standard maximal theorem and the 
known fact: for R (a) > 0, 

™a® = Na(Z) (7-2) 
where 
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N{x)=U(n,a)(l-\x\r~l, \x\<l, 
[0, \x\ > 1, (7-3) 

r(5+«) 
A(n'a) = ^ Ï ^ T 

(See e.g. Stein and Weiss [1971, p. 171].) 
The technical details of the interpolation argument are the same as those of 

§5. 

8. Extensions from a priori inequalities. Our goal here will be to extend 
previous results, which have been limited to the class S, to arbitrary Lp 

functions. 
(A) Maximal functions and maximal Hilbert transforms associated to curves. 

We begin with the following simple lemma: 

LEMMA 8-1. Let f(x) be a locally integratie function, and let y(i) be a 
continuous curve. Then f (x — y(t)) is a measurable function ofx and t. Also for 
almost every x9f(x — y(t)) is a measurable and locally integratie function oft. 

We shall first show that f(x — y(t)) is jointly measurable in x and t. To do 
this we need to show that if £ is a measurable set in Rn+\ then the set 
{(*, t)\x - y(0 e E} is again a measurable set in Rn+l. If E were Borel 
measurable, this would be obvious. Also if E is of measure zero, then for each 
t, the set of x's such that x — y{t) E E is of measure zero. Thus by Fubini's 
Theorem, if E is of measure zero, then the set {x, t\x — y(t) E E} has 
measure zero. Since an arbitrary Lebesgue measurable set is the union of a 
Borel set and a set of Lebesgue measure zero, the measurability assertion of 
the lemma is proved. The fact that f(x — y(t)) is locally integrable in / for 
almost every x follows from Fubini's Theorem. 

Lemma 8-1 implies the following two facts for locally integrable/: 

MJ{x) = \ fo
kf(x-y(t))dt (8-2) 

is a well-defined measurable function of x for every positive h, and MJ{x) is 
a continuous function of h for almost every x. Also 

***«*)-ƒ,, /(*-y(0)f (8-3) 
is a well-defined measurable function of x for each fixed positive e and N. 
Moreover for almost every x, HeNf(x) is continuous in e and N. From (8-2), 
we have 

WW-wplWWl- sup \Mrf{x)\ 
h>0 r>0 

rational 

for almost every x, and 

9CVW - sup \HetNf(x)\ - sup \Hri,J{x)\ 
c > 0 r ,>0 
# > 0 , 2 > 0 

rlfr2 rational 



PROBLEMS IN HARMONIC ANALYSIS 1285 

for almost every x. 
This implies that 91t/ and %*f are measurable. Furthermore, one can see 

that there exist positive, rational-valued measurable functions h(x), e(x), and 
N(x) such that 

\Mh{x)f{x)\>\^Lf(x) a.e., (8-4) 

and 

\HeMMx)f(x)\>\X*f(x) a.e. (8-5) 

Now by an easy limiting argument from Theorems 12 and 13 one obtains 

THEOREM 8. (A) For any f in Lp
9 1 < p < oo, and y(t) homogeneous, ^S\Lfis 

in Lp, and 

\\%f\\, < Ap\\f\\p. 
For any f in Lp

9 1 < p < oo, and y(t) two-sided homogeneous, 

II3CVII, < 4,11/11,. 

(B) Let y(t) be C00. Assume that for small t9 y lies in the subspace spanned by 
y0Xfy>J = 1, 2, Then if f is in Lp

9 1 < p < oo, Vljis in Lp
9 and 

W^ifWp < Ap\\f\\p. 

Iff is in Lp
9 1 < p < oo, OCf/ ö in Lp and 

II W l l , < Ap\\f\\p-
(We have not actually discussed part (B), but the discussion is the same as 

that of part (A).) 
Standard arguments then give the following corollaries: 

COROLLARY 8-6. Let y(t) satisfy the hypotheses of (A) or (B) of Theorem 14, 
then if f is locally in Lp

9p > 1, 

lim I f*f(x-y(t))dt-f(x) a.e. 

COROLLARY 8-7. (A) If y(t) is two-sided homogeneous, and f is in Lp
9 

1 < p < oo, 

%f(x) = lim %£tNf (x) 
N-*oo 

exists almost everywhere and in Lp. Moreover, 

\\%f\\, < A,\\f\\,, 1<P< co. 
(B) Let y(t) be in C °°. Assume that for small t, y lies in the subspace spanned 

by y°\0),j =1,2,.... Then 

%lf(x) = lim%c>lf(x) 

exists almost everywhere and in Lp. Moreover 

W^t/Wp < Ap\\f\\p, Kp <cc. 

(B) Maximal spherical averages. Here we shall restrict our attention to 
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dimension n > 3. We set Sx(t) = {y in Rn\ \x - y\ = t}, and let otx denote 
the usual rotationally invariant measure on Sx(t). The following lemma will 
be critical for us (and interesting in its own right). 

LEMMA 8-8.9 Let E be a set of measure zero in Rn, n > 3. Then for almost 
every x in Rn 

ottX(EnSx(t))-0 

for every t > 0. 

Before proving Lemma 8-8, we need to make some preliminary remarks. 
In §3 (d), we defined 

MJ{x) = ƒ ƒ(x - ty) do(y) - f ƒ(x - ty) dauo(y). 

Since the intersection of a Borel set in Rn with an n — 1-dimensional 
sphere is Borel measurable (with respect to the Borel a-algebra on the sphere), 
we see that Mtf(x) is well defined for any Borel measurable function ƒ and 
every x and t. Thus if ƒ is nonnegative and Borel measurable 

9IL/(JC) - sup \MJ{x)\ 
oo 

is well defined (possibly + oo) for every x. 
We shall need the following 

LEMMA 8-9. Let f(x) and ƒ„(*), n « 1, 2 , . . . , be nonnegative Borel 
measurable functions. Assume fn(x) increases to f (x) for every JC, then 

! * ƒ ( * ) - K m 9IL/„(*). 

PROOF. Clearly 

%f(x)> Vlfn(x) for every n. (8-10) 

Next 

MJm{x)-»MJ(x) 

for every ƒ and x by the monotone convergence theorem. Thus 

Urn <dlf„(x) > MJ(x) 
« - • O O 

for every t. So 

Hm %fn(x) > %f(x). (8-11) 
«->00 

(8-10) and (8-11) imply Lemma 8-9. 
From Lemma 8-9, we see that iff is the characteristic function of an open 

set, 91L/(x) is measurable. Moreover, using Theorem 14 (with a » 0) we have 
that 

IWll, < ÇIMI,. P > n/ (n - 1). (8-12) 

Now it is easy to prove Lemma 8-8. We let Ex be a Borel set of measure 
9 Here wc follow a suggestion of A. Calderón and A. Zygmund. 
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zero containing E, and let g be the characteristic function of Ev It suffices to 
show ?f\Lg(x) is zero almost everywhere. Now let 07 be a sequence of open 
sets containing Ex such that the measure of 0/ tends to 0. Let ƒ, be the 
characteristic function of 0,. Then 

91tg(jc) < lim 'Dit/,. 

But 

|| lim 91L/7||2<lim | | « | 2 = 0 

by (8-12). Thus lim/_>00
(31t// = 0 almost everywhere, so 91tg(jc) = 0 almost 

everywhere. This concludes the proof of Lemma 8-8. 
Lemma 8-8 has the following consequence: 
(8-13) If E is Lebesgue measurable then for almost every x and every /, 

Sx(t) n E is Lebesgue measurable (with respect to Lebesgue measure on 
5,(0). 

This implies that if ƒ(JC) is a simple Lebesgue measurable function, for 
almsot every JC, ƒ restricted to Sx(t) is measurable for all t. Since any 
Lebesgue measurable function is everywhere the limit of a sequence of simple 
functions, we see that for almost every JC, ƒ restricted to the sphere Sx(t) is 
measurable for every /. Thus if ƒ > 0 and is Lebesgue measurable then for 
almost every JC, MJ(x) is defined for all /. 

Hence 
91t/ (JC) = sup M J (JC) 

is defined for almost every JC. We now prove 

THEOREM 16. Let ƒ > 0, then ^Lf{x) is measurable. IJ f is in Lp for 
p > n/(n - 1), so is ^Kj and 

IWII, < 411/11,. 
PROOF. The result is first established for decreasing limits of characteristic 

functions of open sets from (8-12). Lemma 8-8 then implies the theorem for 
characteristic functions of measurable sets. Thus it is also true for simple 
functions. Finally we conclude Theorem 16 in general since we can now 
assert the conclusion of Lemma 8-9 under the more general conditions that fH 

and ƒ are Lebesgue measurable. 
Theorem 16 leads to the following corollary 

COROLLARY 8-14. Iff is locally in Lp,p > n/(n - 1), n > 3, then 

MJ(x) -» ƒ (JC) a.e. 

REMARK. It has been pointed out to us by R. Coifman and G. Weiss and 
independently by C. Calderón that by using ideas similar to the proof of 
Theorem 14 one can show that 

lim „ M2-k (f)(x) = ƒ(x) a.e. 
k—»oo 

(as k ranges over integers) whenever ƒ e Lp, 1 < p, and for any n > 2. 
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PART HI-EPILOGUE 

1. Some areas not covered. We want to make some brief comments about 
several additional topics related to our main subject. 

(i) As we indicated at the beginning of this paper the problem of 
considering other sets besides balls (or cubes) in differentiation theory in Rn 

has been attracting increasing attention lately. We should mention in this 
connection the interesting work of Cordoba and R. Fefferman [1975], [1977] 
and Strömberg [1976] dealing with rectangles in differentiation theory. 
Several earlier results and some background may be found in the survey of de 
Guzman [1975]. 

(ii) The exploitation of curvature of certain sets via the Fourier transform 
has its roots in the problem of estimation of the number of lattice points in 
such sets. These techniques were, in effect, introduced by van der Corput 
more than fifty years ago. Generalizations and more recent results may be 
found in the papers of Hlawka [1950], Herz [1962b] and Randol [1966]. 

A topic having some tangential relation with this and also with the 
spherical maximal functions discussed in detail above is the problem of 
restricting the Fourier transform to lower-dimensional varieties. A particular 
question which is of some interest is whether there is an a-priori inequality of 
the form 

\x/q I /• \x/p 

J ƒ (£)|* </a(|)J < Ap^fRn\f(x)\* dxj (1.1) 

for suitable/? and q. 
About ten years ago it was observed that indeed such inequalities held, 

when n > 2, as long as p is sufficiently close to 1. More recently the best 
possible results were proved for n = 2, i.e. q = p'/39 1 < p < 4/3, and for 
general n when q *= 2, and 1 < p < (2n + 2)/{n + 3). (Further details may 
be found in the papers of C. Fefferman [1970], Zygmund [1974], and Tomas 
[1975]; however the sharp result for q = 2 is still unpublished.) In view of the 
above discussion it may be appropriate to record here the following problem. 

Problem 1. Prove that (1.1) holds when n > 3, q = ((n - \)/{n + 1))/?', 
and 1 < p < 2n/(n + 1). 

2. Some further problems. We state here several problems which arise 
naturally from our work, but whose solution would seem to require new ideas. 
The first four need little comment. 

Problem 2. (a) Is the spherical maximal function bounded in Lp for any 
p < oo in two dimensions? 

(b) Does the corresponding differentiation theorem hold at least for boun­
ded functions? 

Problem 3. Is there an L1 theory for 911 and % corresponding to the curves 
y considered in this paper? In particular, does the differentiation theorem 
hold for all locally integrable ƒ? 

Problem 4. Is there a covering lemma (analogous to 14 (b) in Part I) which 
will prove results about 9IL? 

This problem might have applications to the next one. 

a 
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Problem 5. What can be said if y(t) = y(t9 x) can vary with xl For 
example, is it true that 

lim — ƒ ƒ(*! - t9 x2 - #(*!, *2)'2) <*= /(*i> xi) a-e-

for every bounded ƒ if (say) a is smooth and positive? 
The following problem arises from the observation that the (standard) 

g-function 

r 
Jo 

du(x,y) 
dy 

(where u is the Poisson integral of/) is pointwise majorized by the g-function 
1/2 

ƒ' * 
dMt{f) 

dt 
dt 

used in §4 of Part I. 
Problem 6. (a) Explore the relationship between the g-functions used for 

maximal spherical averages and the standard g-functions. 
(b) Clarify the connection between the g-functions associated to homo­

geneous curves and the more standard ones arising for nonisotropic dilations 
as in Calderón and Torchinsky [1975]. 

The next problem requires several definitions. Let S = G/K be a 
symmetric space (of noncompact type). On it we can define a natural 
maximal function M by 

M(/)(x) = sup ( ' ƒ L/OOI dm{y)\ 

where B(x, r) is the geodesic ball centered at x of radius r-the geodesies 
being taken with respect to a (/-invariant Riemannian metric on S; m is the 
induced invariant measure on S. 

The obstacle to proving Lp and Ll estimates for M by the usual methods is 
the exponential growth of m(B(x9 r)), as r -» oo, which reflects the (negative) 
curvature of S. Nevertheless, implicitly using the Fourier analysis on S (more 
precisely, estimates for spherical functions) Clerc and Stein [1974] proved that 
j|Af(/)||p < i4p||/||p, 1 <P < oo. Those methods however do not dispose of 
the case/7 = 1. 

Problem 7. (a) Is there an Ll theory for the maximal function of symmetric 
spaces of noncompact type? 

(b) Is there a covering lemma which gives the results for this maximal 
function? 

Another problem of a different type is whether the results for % and 911 
for homogeneous curves are extendable to multiparameter sets. We shall, for 
the sake of simplicity, keep our discussion to 3 dimensions and 2 parameters. 

Problem 8. Are there positive results for 

%f(x9y9 z) = ƒ ƒ f(x -s9y-t9z- y(s9 /)) ds dt 
st 
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and 

91t/(x,j>, z) = sup -±r f * f * f(x -s,y-tfz- y(s, t)) ds dtl 

For % a positive result is known for/; = 2 if y(s, i) = |$|a|f|*. (See Nagel 
and Wainger [1977].) There it is also shown that % "generates" singular 
integral operators where the kernels are not integrable across positive dimen­
sional varieties. 

3. Some further results and counterexamples. The last problem we wish to 
discuss can be stated as follows 

Problem 9. Fix/?, 1 < p < oo. Determine the class of curves y for which 
there are LP results for % and 9IL corresponding to y. 

The nature of this problem will be clarified by several examples presented 
below. The simplest is as follows. 

Let y(0 be an odd function such that y(/) = t for 0 < / < 1, and y(t) = at 
+ b f or t > 1, with b ^ 0. We shall show that the Hubert transform corres­
ponding to (t, y(0) is unbounded in L2. Thus in effect we wish to see that 

f"sin($ + itf(/)) f 

is unbounded. Now fl sin(|f + riy(t))dt/t is bounded; but 

J^sin^ + î^O) f 

rN dt 
= cos br] j sin(£f + aqt) — 

rN Jt 

+ sin br\ I cos(£t + aqt) — . 

The first integral is clearly bounded, and the second is unbounded. 
The main idea here is, of course, to construct a function y(0 such that 

(/, y(0) is flat and such that sin(# + rjy(/)) is not zero for a sufficiently large 
set of t9s. 

Next by taking y(t) so that (/, y(0) has many "long" straight line segments 
not passing through the origin, one can construct C00 curves such that 

f-»%xf = j^f{x-t,y-y(t)) ^ 

is unbounded in L2. Modifying this idea one can find odd functions y(t) such 
that y"(0 -» oo as / -> oo, while 

ƒ-+ƒ f(x - Uy - y(0) f 
J\t\>\ l 

is unbounded in L2. 
On the other hand if y(t) is odd, y(0) = 0, y is C2, and y"(0 tends to 

infinity monotonically as / tends to infinity, then 

f-*}" ƒ(* - t,y - y(0) f 
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is bounded in LP(R2), dit least for 5/3 <p < 5/2. We shall not give any, 
details here, but refer the reader to Nagel and Wainger [1976] where also 
other more technical results are discussed. 

We shall now discuss corresponding results for maximal functions associa­
ted to curves. The first curve we consider is the plane curve (t, y(t))> where 
y(0 behaves like log t for large t. If ƒ is the characteristic function of the 
infinite strip -In 2 < y < 0. Then for some y 0 and>> > y0 

\fo
hf(x-t,y-y(t))dt=i 

if h « In 2y. If one lets ƒ be the characteristic function of -In 2 < y < 0, 
— N < x < N, the same reasoning shows |9IL/| > 1/4 on a set of measure 
CAT log N. Thus for this curve 

IWII , < Ap\\f\\P 

holds only for/? = oo. 
Our next goal will be to exhibit a C°° curve y(t) such that 

% ƒ ( * ) = sup 
1>A>0 ïO(*-m4 

is unbounded on each Lp, p < oo. y(/) will be a plane curve (f, y^O)- We 
begin by considering a preliminary curve (/, y(t)), where 

y(0 - {2- r |2 -" < t < 2 • 2-*, * - 1 ,2 , . . . } . 

Let f(x,y) be the characteristic function of the rectangle — 1 < x < 1, 
0 < ^ < c. It is easy to see that 9H, ƒ > 1/4 in the rectangle 2~" < x < 2~* 
+ 1, 2~2" < .y < 2~2" + c. Moreover, one easily sees that C log log l/e of 
these rectangles are disjoint. Thus ^ ƒ > 1/4 on a set of measure C e log 
log l/e, and hence 

W^i f\\P < A(p)\\f\\p 

can hold only for/? = oo. It is easy to modify the above example to make y 
C00 since the jumps of y are exponentially smaller than the lengths of the 
intervals of constancy. 

One may also deduce from the estimates above the fact that the 
differentiation theorem does not hold for y(f), even for the class of bounded 
functions. 

We shall formulate the required argument as a lemma, in the setting of the 
H-torus instead of Rn. Thus we shall think of our functions as defined on the 
fundamental cube {x\ - 1/2 < Xj < 1/2} in Rn

9 and continued periodically. 
We let { Tk) be a sequence of operators given by TfJ = ƒ * dnk, where each 
d\ik is a nonnegative measure whose total mass is bounded (in k). We assume 
that 

Urn Tk ( ƒ) - ƒ a.e. for every ƒ G L00. (2.1) 

We set !*(./)-rop*|Ii(y)|. 

LEMMA. Assume that {Tk} satisfies the above assumption, including (2.1). 
Then for every c > 0 there exists A = Acso that 
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\{X\T*(XE)>C}\<AC\E\, (2.3) 

for all measurable sets E. 

Note that by the previous construcion (2.3) fails (when c = 1/4), and so 
differentiation almost everywhere fails for the curve y for bounded functions. 

PROOF OF THE LEMMA. Suppose (2.3) does not hold for some c. Then there 
exists a sequence of sets En, so that if E* = {X\T*XE„ > c}> then l^*l/l^/J ~* 
oo, as n -> oo. Now set T?(f) = sup„>r| TJ\. 

By using the sets En9 together with repetitions and a selected subsequence, 
it is not difficult to construct another collection of sets Fn9 with the following 
properties. There exists an integer-valued function n -» r(n)9 with r(n) -* oo, 
as n -* oo, so that if F* = {JC| T*(n)(xFn) > c}9 then 

2 \Fn\ < 1/2, while 2 | / ? | - oo. 

By Calderón's lemma (see Zygmund [1959, II, 165]), there is a sequence 
{xn} of points, so the translated sets i7* + xn have the property that almost 
every point is contained in infinitely many of the sets F% + xn. 

Let F = U {Fn + xn}. Then |F| < 1/2, but lim sup^^ Tn(xF) > c almost 
everywhere. This is a contradiction, and the lemma is proved. We conclude 
with a result somewhat paradoxical in view of the above counterexamp-
le-that the differentiation theorem may hold even in some "infinitely flat" 
cases-besides the straight line. We consider the curve (t9 y(/)) in R2

9 and 
outline the proof of the following theorem for/? = 2. 

THEOREM. If y(0) = y'(0) = 0> and y(0> Y'(0> and y"(0 are increasing, and 
positive when t > 0, then 

mfh<A\\f\\2. 
This theorem is proved by introducing a suitable g-f unction. We set 

MJ{x9y) = \ f"f(x - t9y - y(/)) * 

and 

*•«*'> • m f {Cf(x - ••" - '>*} * 
Then define 

1 /2 

8(f)(x,y) - { jT f \Mhf(x9y) - NJi^yrf} . 
By the reasoning of §(3-6), it suffices to prove ||g(/)||2 < c||/||2. Following 
the lines of (3-6), this estimate in turn follows from 

J T f H ( £ i j ) - i f c ( & i j ) | 2 < c < o o , (1) 

where 

1 r2h 

™h&
 fn) = i J exP{# + *nr(0} * 
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and 

*<* ^-kkh) r { r w exp{'̂ +ir,{s)] *}d u 

We divide the integral in (1) into three parts: 0 < h < jy~Xl/yj), 
\y~\\/i\) < h < y~\\/t\\ and h > y~\\/v\). The boundedness of the 
integral over the first interval follows from the estimate \mh(^9 TJ) — nh(£9 rç)l 
< T?y(2A). The boundedness over the second part is obvious. The bounded­
ness over the third part is proved by noting that 

fa(i,v)\<c/h{m"(h)}l/2 

(by van der Corput's lemma) and 

\nh&r>)\<l/Vy(h). 

Throughout one needs the estimates y(t) < tyf(t) and y'(0 < /y"(0-
ADDED IN PROOF. Recently Fourier transform methods have been used to 

improve the results of J. Strömberg [1976] and A. Cordoba and R. Fefferman 
[1977]. See Differentiation in lacunary directions, by A. Nagel, E. M. Stein and 
S. Wainger, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1060-1062. 

Also A. Nagel, E. M. Stein and S. Wainger have recently made progress in 
problem 5) above. A summary of these results will appear shortly. 
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