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difficult." Indeed, we do. After studying this chapter, mathematicians will 
find these discussions less difficult. 

Prerequisites for profitable reading of this book consist of a knowledge of 
basic graduate level differential geometry and a knowledge of Newtonian 
physics at least equivalent to a good freshman level course in the subject. The 
presence of many exercises make the book appropriate as a text, perhaps for 
example as the second semester of a first graduate course in differential 
geometry. The first half of the book should already sufficiently prepare the 
reader for entry into the physics literature with a minimum of trauma. 
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Modern stochastic integration began in 1828 when the English botanist 
Robert Brown observed the motion of pollen grains in a glass of water. 
Bachelier (1900, [2]) and Einstein (1905, [7]) studied the mathematical model
ling of the motion of the grains, now called Brownian motion. But it was 
Wiener (1923, [25]), making use of the ideas of Borel and Lebesgue, who 
created the modern rigorous mathematical model of Brownian motion, the 
Wiener process. 

The Wiener process has three properties which make it of fundamental 
importance to the theory of stochastic processes: it is a Gaussian process, it is 
a strong Markov process, and it is a martingale. Let W— (W(t, <o)),>0 

denote a Wiener process, in which t is the time and each <o is a particle; then 
W(t, co) represents the position of that particle at time t. One can show that 
except on a set of probability zero, every sample path (i.e., W(t, <o) as a 
function of / for fixed co) is continuous but is of unbounded variation on 
every compact time set. Since the sample paths are nowhere differentiable, 
the Brownian particle cannot have an instantaneous velocity. This bizarre 
property may be viewed as a consequence of the Markov property; that is: 
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knowledge of both the present and past positions of the particle is no better at 
predicting its future location than knowledge of the present position alone. If 
a Brownian particle were to have instantaneous velocity then both the present 
position and the velocity would be needed to predict the future position; such 
a dependence on the past behavior of the particle would violate the Markov 
property. 

Since the sample paths are of unbounded variation on every compact set, 
they cannot be differentials in a Stieltjes integral. Although Stieltjes 
integration with respect to the paths of the Wiener process is not possible, the 
differential dW does have an intuitive interpretation. Engineers think of dW 
as white noise, and by the use of generalized functions [1, pp. 51-53] one can 
define the quantity dW rigorously. Wiener (1933, [20]) gave meaning to dW in 
his definition of what is called the Wiener integral, but in such integrals the 
integrands are functions of time only {certain functions). It was K. Itô (1944, 
[9]) who first defined an integral for random integrands with respect to the 
Wiener process. Itô used his integral to represent a large class of diffusions as 
solutions of stochastic differential equations. This representation provides an 
intuitive and purely probabilistic construction of diffusions. The difference 
between ordinary calculus and the stochastic calculus developed by Itô is 
most strikingly illustrated by the famed Itô change of variable formula, valid 
for any ƒ in C2: 

f(Wt) - f(W0) +Jj(Ws)dWs + \ lj\Wa) ds. (1) 

Of course, in ordinary Riemann-Stieltjes integration the third term on the 
right side of (1) does not appear. Ito's integral has the important feature that 
for appropriate integrands H = (H(s, o)))s>09 the process (IoHsdWs)t>0 is a 
martingale, one of the fundamental properties of the Wiener process. 

A martingale is a stochastic process X = (Xt)t>0 such that Xt E L1 for each 
t and such that the conditional expectation satisfies the relation 

E{X,\%) = X, (s< t) (2) 

where % is a a-algebra representing all observable events before time s. Doob 
(1953, [6]) extended Ito's work on integration by using martingales instead of 
Wiener processes. The integral is so constructed that integration with respect 
to a martingale yields a martingale. If (2) is replaced by E(Xt\&8) > Xs, the 
process is called a submartingale. In 1962 Meyer [16] found the right 
conditions under which a certain decomposition of submartingales is 
possible; Kunita and Watanabe (1967, [11]) then used this decomposition to 
reveal an elegant theory of stochastic integration with respect to martingales. 
Doléans-Dade and Meyer [5] removed an assumption on the underlying 
filtration of a-algebras and proved a general change of variables formula, an 
extension of (1). 

The Wiener process contributed to the development of stochastic 
integration in another, more circuitous fashion. Doob revealed a connection 
between the Wiener process and classical potential theory, and the funda
mental papers of Hunt in 1956 helped to lay the groundwork of probabilistic 
potential theory. The Strasbourg school (Meyer, Dellacherie, and others) 



1348 BOOK REVIEWS 

realized that many of the concepts developed in Markov process theory have 
significance when applied to stochastic processes that do not satisfy the 
Markov property. The basic underlying structure of a stochastic process 
(Xt)t>0 is a filtered probability space (fi, 5", %9 P) where one assumes: (1) 
that % C % if s < t; (2) % contains all P-null sets; and (3) f\t>s% = &s. 
These three hypotheses are said to be the usual hypotheses. If Xt is %-
measurable for each / > 0, X is adapted. The process X customarily satisfies 
additional hypotheses; for example, it may be a Markov process, a point 
process, a martingale, or a Gaussian process. The general theory of processes is 
the study of stochastic processes which need satisfy only the usual hypothe
ses. 

From the standpoint of stochastic integration the development of the 
general theory of processes has been crucial. One example is the use of the 
optional and predictable a-fields. A stochastic process (Xt)t>0 is a function 
mapping Î2 X [0, oo[ into R. There are several useful a-algebras with which 
one can endow Q X [0, oo[. The most naive is <$ ® ©, where $ is the 
collection of Borel sets of [0, oo[. For technical reasons a-algebras that evolve 
with time are employed. The optional o-algebra 0 is the smallest a-algebra 
generated by adapted processes with right continuous paths. The predictable 
o-algebra 9 is generated by adapted processes with left continuous paths. In 
general, 9 C 0 C 5" ® ®. Among the deepest results of the general theory 
of processes are the Section Theorems. These theorems are used to prove the 
existence of a unique projection of a bounded ^ ® % -measurable process 
onto the optional and predictable processes. 

In the case of the canonical Wiener process, the optional and predictable 
a-algebras coincide. In addition, an adapted process which is 9 ® % -
measurable comes very close to being optional, in a technical sense. Attempts 
were made to extend the Itô integral to a martingale integral which allowed 
9 ® % -measurable, adapted processes as integrands. The general situation is 
complicated. If the integrands are restricted to predictable processes that 
satisfy appropriate finiteness conditions, then the resulting integral has the 
following desirable properties: (a) it is a martingale; (b) when the differential 
has paths of bounded variation, the integral agrees on those paths with a 
Lebesgue-Stieltjes integral; (c) letting AM, = Mt - M,_ (the jump at t\ the 
two processes (kf'0HsdMs)t>0 and (Ht&Mt)t>0 are indistinguishable. 
Properties (b) and (c) fail to hold, in general, if predictable integrands are 
replaced by adapted and % ® ® -measurable integrands, or even if optional 
integrands are used. 

If all the paths of an adapted process are right continuous and of finite 
variation on compact time sets, we call the process a VF process. If F is a VF 
process and H is a bounded predictable process then, for each fixed <o, we 
denote by foHs(u>) dVs(u>) the Lebesgue-Stieltjes integral. There is no ambi
guity in notation here because of property (b) of the martingale integral 
discussed previously. A stochastic process is a local martingale if certain 
integrability conditions in the definition of a martingale are relaxed. It turns 
out that the development of stochastic integrals can be extended to local 
martingales. A stochastic process A" is a semimartingale if X can be written in 
the form 
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X = L + V (3) 

where L is a local martingale and V is a, VF process. If H is a bounded, 
predictable process, one can then define JQHS dXs by 

ÇHS dXs = CHS dLs + CHS dVs. (4) 
•'O J0 J0 

Although the decomposition (3) need not be unique, the integral f'0Hs dXs in 
(4) is nonetheless well defined as a consequence of property (b) of the 
martingale integral. We will refer to the stochastic integral given by (4) as the 
semimartingale integral. 

The semimartingale integral is perhaps the best known extension of the Itô 
integral, but it is not the only one. Fisk and Stratonovich [24] independently 
discovered a symmetrized integral for Wiener process differentials which 
obeys the rules of ordinary calculus. However one loses the property that the 
integral (f'0Hs dWs)t>0, when considered as a process, is a martingale. Meyer 
[18, p. 360] has proposed an extension of the Fisk-Stratonovich integral to 
semimartingale integrators. Unfortunately the class of integrands admissible 
for the Fisk-Stratonovich integral is much smaller than the class of admissible 
integrands for the semimartingale integral. 

In his book on stochastic calculus McShane (1974, [12]; see also [13]) 
proposes a stochastic integral which also extends the Itô integral to more 
general differentials than the Wiener process. McShane's differentials in most 
cases must satisfy a technical requirement, which he calls the KAt conditions. 
It has been shown, however, that KAt processes are semimartingales, and the 
relationship between the McShane integral and the semimartingale integral 
has been determined (cf. Protter [23]). 

The semimartingale integral as previously described is restricted to real-
valued processes. Kunita [10], Metivier [14], [15], Pellaumail [21] and others 
have developed a theory of stochastic integrals which are Hilbert-space and 
Banach-space valued. This approach uses not only the general theory of 
processes, but also vector-valued measures. This development led to several 
nice martingale representation theorems in Rn (cf. Galcuk [8], Meyer [19]). 

The book by Kussmaul reviewed here is the first introductory text on 
stochastic integration in English. Kussmaul takes the most general approach, 
that of vector-valued measures, although in the scalar case he shows in §11 
the relationship of his development to the better known semimartingale 
integral. Kussmaul's presentation of the general theory of processes is 
streamlined. This may prove to be valuable to a newcomer to the subject, 
since Dellacherie's book [3] (in French), the standard reference for the general 
theory, contains the proofs of several difficult theorems which are not 
essential for an understanding of the basic principles of stochastic integration. 
It is regrettable, however, that Kussmaul has gone to the other extreme, and 
omitted the proofs of the section theorems, which are among the key results 
of the subject. 

The stochastic integral is useful both as a theoretical and a practical tool. 
For example, the original proofs of the existence of a Levy system for a 
strong Markov process used stochastic integrals (cf., e.g., Meyer [17]). When a 
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real-valued Markov process Z is also a semimartingale, one can give rigorous 
meaning to the intuitive notion dZ by the use of stochastic integrals (cf. 
Protter [22]). On the applied side, stochastic integrals and stochastic 
differential equations have been used in stastistical communication theory. 
Kussmaul gives a taste of the usefulness of stochastic integration by proving a 
martingale representation theorem. 

Extensions of the Itô integral to local martingales and to semimartingales 
have always been accompanied by proofs of the appropriate version of Ito's 
lemma (1). This lemma is not only essential for an understanding of the 
stochastic integral, but also for the calculation of closed-form expressions of 
many useful integrals. The proofs of a large number of results in the theory of 
stochastic integrals and stochastic differential equations require Ito's lemma 
(cf., e.g., Doléans-Dadc [4]). Unfortunately, the book by Kussmaul, as he 
himself points out in the preface, fails to present a change of variables 
formula. Since Kussmaul does not give any reference to Ito's lemma, it is up 
to the reader to consult the literature. Good sources for this lemma are 
Metivier and Pistone [15], Meyer [18], or Pellaumail [21]. 

Although the book is introductory in nature, Kussmaul points out in the 
preface that the reader should have a knowledge of measure theory, some 
probability, and some Banach space theory. However, various parts of the 
book make other demands on the reader. Since Kussmaul concentrates on the 
vector-valued measure approach, which does not have nearly so well-devel
oped a theory as does the scalar case, it is advisable that the reader have some 
familiarity with scalar stochastic integration. This is especially desirable 
because of the abstract nature of the approach. In fact, it is conceivable that 
an uninitiated reader of this book might not become aware of the differences 
between a martingale integral and a randomized Stieltjes integral. 
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In the beginning (30 years ago) were Shannon and Hamming, and they 
took two different approaches to the coding problem. Shannon showed that 
the presence of random noise on a communications channel did not, by itself, 
impose any nonzero bound on the reliability with which communications 
could be transmitted over the channel. Given virtually any statistical 
description of the channel noise, one could compute a number C, called the 
channel capacity, which is a limit on the rate at which information can be 
transmitted across the channel. For any rate R < C, and any e > 0, one 
could concoct codes of rate R which would allow arbitrarily long blocks of 
information to be transmitted across the noisy channel in such a way that the 
entire block could be correctly received with probability greater than 1 — e. 
Shannon's results were astounding and, at first, counterintuitive. However, 
they opened an area of study which has continued until this day. Modern 
practitioners of the "Shannon theory'' continue to study questions of what 
performance is theoretically possible and what is not when one is free to use 
asymptotically long codes. The major activity in this area in the last few years 
has been related to questions about networks of channels, and broadcast 
channels, in which the same transmitted information is corrupted by different 
types of noise before being received by many different receivers. The main 


