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A TOPOLOGICAL RESOLUTION THEOREM 

BY SELMAN AKBULUT AND LARRY TAYLOR 

We prove a topological analogue of the resolution theorem for algebraic 
varieties [H]. We show that every compact P.L. manifold M admits a framed 
stratification (every stratum has a product neighborhood) such that after a se
quence of topological blow ups performed along the closed smooth strata we 
get a compact smooth manifold M (9Af = 0 if bM = 0 ) and a degree one map 
(with Z/2 coefficients) n: M —• M. The map n is a P.L. homeomorphism in the 
complement of a union of smooth submanifolds of the form Nt x Wt, such that 
7T collapses N( x Wt to Nt in some order. This structure can be used to show 
that every compact P.L. manifold is P.L. homeomorphic to a real algebraic vari
ety [AK]. This also gives a nice way of defining differential forms on P.L. man
ifolds by pushing down the relative forms from the smooth resolution spaces. 

Define an A0-structure on a P.L. manifold to be a smooth structure, and 
call such manifold an A0-manifold. Inductively define an Ak-structure on a 
P.L. manifold M to be a decomposition 

^ = ^ o u
0 I I Ni xcone(S.) 

1 = 1 

for some r, where M0 is an Ak_l-manifold with boundary; each 2 / is a boundary 
of a compact Ak„x-manifold and is P.L. homeomorphic to a P.L. sphere; and 
Nf are smooth manifolds. Finally 0 = {0Z-} are maps describing the identification 
(as stratified sets) 0f: N( x Sf —> dMQ where the union is taken. We say M has 
an A -structure if it has an ^-structure for some k. 

To describe the blowing up process, let M be an Ak-manifold. Then M = 
M0 UII ƒ Nj x cone(S/) and we can choose compact Ak_x-manifolds Wt with 
dWj = 2;. Construct the obvious Ak_x-manifold Mk_x = M0 Ull. Nt x W(. 
There is the obvious P.L. map it: Mk^_1 —• M which is the identity on M0 and 
collapses each Nt x Wf onto Nt. We can iterate this process to get a resolution 
sequence 

M = M0 - ^ Mx - ^ • • • ^ Mk_x - ^ M. 
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M is smooth and clearly the composition map n: M —> M collapses Nt x Wt on
to Nt. 

Following [L] and [W] we define A -thickenings; the classifying space BA\ 
and the natural map BA —• BPL. Then we prove the usual structure theorem: 
Namely that a compact P.L. manifold M has an .4-structure if and only if the 
normal bundle map (thickening map) 

lifts to BA. Let PL/A be the homotopy theoretical fibre of BA —• BPL. 

THEOREM. BA — BPL x PL/A, and PL/A is the product of Eilenberg-
Mc Laine spaces K(Z/2, n)9s. The number 8n of 'K(Z/2, n) for each n in this 
product is given to be 

fo ifn<8, 
5„=<26 (f#i = 8, 

I infinite but countable ifn>8. 

COROLLARY. Every compact PL. manifold M has an A-structure and 
number of different A-structures (up to A-concordancé) on M is given by 
e „ > 8 Hn(M- «„(PL/A)). 

Roughly an A structure on M gives a topological resolution on M and 
© n Hn(M: irn(PL/A)) classifies different ways of resolving M. 

OUTLINE OF PROOF. While constructing BA we also classify ^-thicken
ings and prove the usual classification theorem for them. We then proceed to 
analize BAfç, and BA = lim^oo BA}ç. It is standard that ti^L/A^) coincides 
with concordance classes of ^-structures on Sl. Since ir^PL/A) = 
^^k-^oo^i(PE/Ak) it follows from definitions that n.ÇPL/A) maps monically to 
the /-dimensional unoriented A bordism group r\f. Next we construct a Thorn 
spectrum, MA, with n.(MA) « qf. 

Since it is clear that an y^-manifold crossed with a smooth manifold is an 
^-manifold, we can show that MA is an MO module spectrum and it is now a 
formality that the map y\f —> Ht(BA ; Z/2) given by 

{MV^BA} ~> (!>„)• [M] 

is monic. Hence n*(PL/A) —• H*(BA ; Z/2) is monic, hence split. It is now easy 
to show that PL/A is a product of K(Z/2, «)'s and to construct a map BA —• 
PL/A splitting the inclusion PL/A —• BA. 

To compute hn is not so hard. To construct BA one proves along the way 
that Sw is countable. For n < 8 one can explicitly see all the A -spheres so there 
is no problem. Above 8 things are complicated but it is not too hard to construct 
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an infinite number of concordance classes in each dimension. The details will 
appear elsewhere [AT]. 
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