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of recursion theory. Broadly speaking, there are two possibilities. Firstly, we 
can try to generalise our recursion theory from (w<o)m X o)n to Ceo)* X (<0co)m 

X co", and so on. Once the "correct" definition of "recursive" has been made, 
many of the results considered in the book can be generalised, and Hinman 
provides several such generalisations. The second generalisation arises when 
we try to replace to by a larger ordinal number. Not all ordinals a admit a 
reasonable "recursion theory". Those that do are called "admissible ordi­
nals". Much is now known about such ordinals, and they play an important 
role in Set Theory as well as Recursion Theory-indced some of the argu­
ments employed in recursion theory on admissible sets have a distinctly 
set-theoretic flavor! 

It should be said that, despite our brief reference to this section given 
above, Part C occupies fully one half of the book, and contains a vast amount 
of material. Indeed, as Hinman says in his Preface, this is the material of 
which his volume was originally intended to consist! 

So how did I find the volume? Well, let me first of all admit to being a 
reluctant reader (of any serious text); as well as one with a marked tendency 
to miss all sorts of errors. Consequently, I read the book in a fairly "shallow" 
fashion, and gained a fairly good impression of an area in which I am not at 
all expert. Armed with a reasonable foreknowledge of basic recursion theory 
and set theory as I was, I found the going not too bad. But the book is plainly 
intended for the more dedicated reader, with most proofs given in some 
detail. My feeling (prejudice?) here is that the lone reader may well find the 
going heavy (I would have, had I tried to read through it in depth), so that it 
would be preferable to couple the reading with a series of seminars or 
discussions on the material. There is a large selection of exercises, distributed 
throughout the text, some easy, some not so easy, and some with hints. So as 
a "standard text" the book stands very well indeed. 
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On uniformization of complex manifolds: The role of connections, by R. C. 
Gunning, Mathematical Notes no. 22, Princeton Univ. Press, Princeton, 
N. J., 1978, ii + 141 pp., $6.00. 

In a celebrated inaugural address at Erlangen in 1872, Felix Klein defined 
geometry as the study of those properties of figures that remain invariant 
under a particular group of transformations. Thus, Euclidean geometry is the 
study of such properties as length, area, volume and angle which are all 
invariants of the group of Euclidean motions. In Klein's view, by considering 
a larger group one obtains a more general geometry. Thus Euclidean geome­
try is a special case of affine geometry. The latter in its turn is a special case 
of projective geometry. In any of these geometries, the group is relatively 
large. What Klein had in mind must be geometry of homogeneous spaces. 
For this reason, a homogeneous space G/H of a Lie group G is sometimes 
called a Klein space. 
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Elie Cartan and others extended Klein's Erlanger Program to include such 
geometric structures as Riemannian structures, affine connections and projec­
tive connections. On a Riemannian manifold, each tangent space has the 
structure of a Euclidean space while an affine connection defines how a 
tangent space, regarded as an affine space, should be developed onto the 
tangent space at an infinitesimally nearby point. In discussing projective 
connections, one replaces each tangent affine space by a tangent projective 
space. Thus, Klein's idea is still valid in differential geometry in the infinitesi­
mal sense. Although a manifold itself may not be a Klein space, its tangent 
spaces are Klein spaces associated with a particular group of transformations. 

Pseudo-groups of Lie-Cartan may be used also to unify certain geometric 
structures. A pseudo-group T of transformations of a space S is a locally 
defined transformation group so that if ƒ, g E T, their composition g ° ƒ is 
defined to the extent that the range of ƒ meets the domain of g. The 
pseudo-grop TA * of affine transformations on the affine «-space A n consists 
of restrictions of affine transformations of A n to open subsets of An. Every 
Lie group G has its infinitesimal version or linear approximation, called the 
Lie algebra of G. Similarly, every interesting pseudo-group of transformations 
has its infinitesimal version, which can be described as a sheaf of Lie algebras 
of vector field germs. In the sense that the classification of Lie algebras 
reduces to that of simple ones (which is, of course, far from being true), the 
classification of Lie algebras of vector field germs reduces to that of "primi­
tive" ones, and this was essentially carried out by E. Cartan in 1902-1909. 
Thanks to joint efforts by many geometers in the 1960s, Cartan's results have 
been made precise with more elegant proofs. 

Given a pseudo-group T one can speak of a T-structure. Thus, an affine 
structure on an /z-dimensional manifold M is defined by a collection of 
coordinate charts { Ui9 <p,} such that U Ut = M, <p,: If -> An and <jp,. o «p.-1 e 
TA„. In other words, to give an affine structure to M is to cover M with 
coordinate charts in such a way that the coordinate changes are all affine 
transformations. Since an affine structure is locally indistinguishable from the 
global affine structure on A ", it induces a natural flat affine connection, i.e., 
affine connection with vanishing torsion and curvature. Conversely, every flat 
affine connection induces an affine structure. The same can be said of other 
classical geometric structures. Schematically, we can summarize the situation 
as follows. (The second column generalizes the first and, in its turn, a special 
case, i.e., the flat case of the third.) 

Classical Geometry T- structure Connection 

Euclidean Geometry (locally) Euclidean Riemannian Connection 
structure 

Affine Geometry Affine Structure Affine Connection 
Projective Geometry Projective Structure Projective Connection 
Möbius Geometry Conformai Structure Conformai Connection 
(Conformai Geometry) 
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So far, we have described "real" geometries on "real" manifolds. It is very 
natural to consider also their complex analogues with holomorphic geometric 
objects. Although Kâhler or Hermitian geometry is an important complex 
analogue of Riemannian geometry, it is not a holomorphic analogue since it 
requires dz\ . . . , dzn as well as dzl,..., dzn. (Although it is possible to 
build a holomorphic analogue of Riemannian geometry by considering holo­
morphic, nondegenerate, symmetric covariant tensor fields of degree 2, there 
are few (compact) complex manifolds admitting such tensor fields.) On the 
other hand, the concept of affine or projective connection extends more 
naturally to the holomorphic case. The subject of Gunning's lecture notes 
under review is precisely the study of holomorphic pseudo-group structures 
and holomorphic connections. Gunning has been exploring this subject for 
the past 15 years. Although several other people including Filmore, Scheune-
man, Matsushima, Sakane and Vitter have made also important contributions 
to the theory of holomorphic affine connections and structures, the scope of 
the present notes is much wider. 

We shall now go into some technical details of the notes. Gunning 
considers not only holomorphic affine connections but also holomorphic 
projective connections and holomorphic canonical connections. (By a canoni­
cal connection, he means a connection in the canonical line bundle.) These 
three types of connections and the corresponding pseudo-groups were not 
chosen at random. In Part I, he shows that, in dimension greater than 1, these 
and only these three pseudo-groups are (aside from the pseudo-group of all 
local holomorphic transformations) tangentially transitive in the sense that 
their linear isotropy groups are the largest possible group, i.e., the general 
linear group. Although the tangentially transitive pseudo-groups form a 
subclass of the class of primitive pseudo-groups, their classification is carried 
out here directly completely independent of Cartan's classification of primi­
tive pseudo-groups. 

In Part II, Gunning discusses holomorphic connections associated with 
each of the three tangentially transitive pseudo-groups. In contrast to the real 
differentiable case where the existence of a connection is a triviality, there is, 
in general, an obstruction to the existence of a holomorphic connection. 
Consider, for example, the case of a holomorphic affine connection. Given a 
complex manifold M covered by coordinate neighborhoods U, V,. •. with 
local coordinates (ul

9..., un% ( t ? 1 , . . . , vn),..., we consider 

* w - 2 -^^duJ®duk® — . 
duJdu dvl 

Each cvu is a holomorphic tensor field of covariant degree 2 and con­
travariant degree 1 defined on U n V. In other words, it is an element of 
H°(U n V; B1 ® Q1 ® 0), where Ö1 (resp. 0) is the sheaf of germs of 
holomorphic 1-forms (resp. vector fields). Using the chain rule for several 
variables we can verify that {cvu} is a 1-cocycle and hence defines an 
element of Hl(M; Q1 ® Ql ® 0). This cocycle is cohomologous to zero if and 
only if there exists a 0-cochain {£<,}, bu G H°(U; Q1 ® B1 ® 0), such that 
cvu = bu — bv. If we write 
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then the equality cvu = bv — bv is nothing but the classical transformation 
law for the Christoffel symbols T'UJk. This shows that a complex manifold M 
admits a holomorphic affine connection if and only if the element of Hl(M; 
Ql ® Q1 ® 0) defined by the 1-cocycle {cvu} is zero. This homological 
interpretation, admittedly tautological, is none the less useful in discussing 
holomorphic connections. For example, the vanishing of Hl(M; Q1 ® Ö1 ® 
0) is a usable sufficient condition for the existence of a holomorphic affine 
connection. 

For projective connections, the 1-cocycle {cvu} to be considered is given 
by 

duj ®duk® — 
9t>' 

where rvu = det(9t//9wy). For canonical connections, one needs 

cvu - d log rvu G H°(£7 n V; Ö1)-

An important necessary condition for the existence of a holomorphic affine 
connection is given by vanishing of Chern classes c, = 0 for i > n/2, or more 
generally, cit • • • cik = 0 for ix + • * • + ik > n/2, [2]. This condition can be 
strengthened to the vanishing of all ci9 i > 0, when M admits a Kâhler metric. 
Similar necessary conditions are given for projective and canonical connec­
tions. 

In Part HI, Gunning discusses the existence problem for (flat and nonflat) 
holomorphic affine, projective and canonical connections on compact com­
plex analytic surfaces. In the affine case, necessary conditions c, = c2 = 0 
eliminate very quickly many surfaces from the classification table of Kodaira. 
As one would expect, the surfaces of class VH0, still not completely known, 
cause some difficulties. In fact, the argument on p. 113 is not complete. For 
the determination of compact analytic surfaces admitting holomorphic affine 
connections, we refer the reader to [2]. In the case of surfaces, it happens that 
the surfaces admitting holomorphic affine connections admit also holomor­
phic affine structures. In the projective case, a necessary condition 3c2 = c\ 
disqualifies many surfaces while cx ~ 0 is a necessary and sufficient condition 
in the canonical case. 

In his earlier and widely read notes, Lectures on Riemann surfaces, in the 
same Princeton Mathematical Notes series, Gunning has already discussed 
holomorphic affine and projective structures and connections on Riemann 
surfaces. He has shown there that a compact Riemann surface of any genus 
always admits projective structures while it admits affine structures only 
when the genus is one. In the present book, he shows that, in higher 
dimensions, even projective structures rarely exist. These structures are, none 
the less, of great interest. For example, the unknown surfaces of Class VH0, if 
any, admit affine structures, [1], [2], and this fact may prove to be useful in 
determining all surfaces of Class VII0. 

cvu ~" 
9 V _ sidlogrvu 

duJduk J 9w* 
H 

9 log T) 

duJ 
vu 
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Algebraic geometry, as a mutually beneficial association between major 
branches of mathematics, was set up with the invention by Descartes and 
Fermât of Cartesian coordinates. Geometry was as old as mathematics; but it 
was not until the seventeenth century, more or less, that algebra had matured 
to the point where it could stand as an equal partner. Calculus too played a 
major role (tangents, curvature, etc.); in the early stages algebraic and 
differential geometry could be considered to be two aspects of "analytic" (as 
opposed to "synthetic ") geometry. 

During the nineteenth century the horizons of the subject were expanded 
(to oo !) by the development of projective geometry and the use of complex 
numbers as coordinates. Gradually, out of an intensive study of special curves 
and surfaces, the idea emerged that algebraic geometry should deal with an 
arbitrary algebraic subset of «-dimensional projective space over the complex 
numbers (i.e. a set of points where finitely many homogeneous polynomials 
with complex coefficients vanish simultaneously). This was the proper context 
for the working out of concepts like transformation groups and their in­
variants, correspondences, and "enumerative" geometry (how to count the 
number of solutions of a geometric problem). 

In the middle of the nineteenth century, Riemann appeared on the scene 
like a supernova. His conceptions of intrinsic geometry on a manifold, 
topology, function theory on a Riemann surface, birational transformations, 
abelian integrals, and zeta functions, fueled almost all the subsequent devel­
opments. In the analytic vein, which is relevant to the book under review, 
some of the more prominent contributors have been Picard, Poincaré, 
Lefschetz, Hodge, Kodaira, and Hirzebruch. In particular Hodge and 
Kodaira used the theory of partial differential equations to establish basic 
results, some of which have not yet been proved otherwise. 

It is not my purpose here to summarize the history of algebraic geometry 
(cf. [D], [Z]), but rather to suggest that since it began algebraic geometry has 
been a prime exhibit of the unity of mathematics, an area where diverse 
methods from analysis, topology, geometry, algebra and even number theory 
have interacted in a marvellously fruitful way. Indeed, though the subject has 
sometimes grown in directions which seemed exclusively algebraic, geometric, 
or analytic, history teaches us that it will continue to flourish only if 
nourished by ideas from all the different fields. 


