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of the book. Applications are drawn primarily from many-valued logic, an 
area traditionally (though perhaps unjustly) linked to philosophy. Trains of 
thought that would naturally occur to a mathematician (or, at least, did occur 
to me) are omitted entirely. For example, there is no mention of the fact that, 
in discussing graph arguments from X to Y, one loses no generality by 
assuming that X and Y are both empty. {X V Y follows from a set of 
inferences Xt h Yt if and only if 0 h 0 follows from these inferences along 
with 0 h A (resp. A V 0 ) for every formula A in X (resp. Y); in other words, 
V and A can be replaced with <5" and £ respectively.) And, finally, the detailed 
motivations of concepts and theorems go well beyond the norm to which 
mathematicians are (unfortunately) accustomed. 
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Invariant theory. The very words recall potent historical forces. Hubert [10] 
viewed mathematical theory as the sum of three stages of development: the 
naive, the formal, and the critical periods. The progenitors of these periods 
come to mind. The Naive Period of invariant theory is represented by Boole, 
Sylvester, and Cayley, those conjurers of catalectants and other invariants of 
special quantics. The Formal Period arrived with the work of the Italian 
school of Cremona, Beltrami, and Capelli and the German school of 
Aronhold, Clebsch, and Gordon, whose symbolic method exposed the power 
of duality in algebra. In the Critical Period the heretic Hilbert reigned, armed 
with his homological methods; ultimately Noether, Van der Waerden and 
Artin enlarged on his ideas to found modern algebra. 

Although Hilbert declared the subject dead in 1893 [9], rumors of its 
demise were greatly exaggerated. Soon after, Reverend Young, alone and 
unnoticed, was divining the secrets of the symmetric group from his diagrams. 
At the same time, Weitzenböck, Study, and Littlewood unmasked tensor 
analysis as invariant theory in disguise. Soon after Molien, Frobenius, Cartan, 
Schur, and Weyl in generalizing invariant theory, ensconced it within a new 
subject, representation theory. No wonder Dieudonné could jest, "Invariant 
Theory has already been pronounced dead several times and like the phoenix 
it has been again and again arising from its ashes," [3]. 

Has it been laid to rest? Hardly! The recent International Congress of 
Mathematicians in Helsinki included at least three forty-five minutes 
addresses devoted largely to recent progress in the field. Invariant theory is 
like the roots of a great tree, whose branches touch all of mathematics; still in 
its prime, it is bearing beautiful fruit. Consider some applications of invariant 
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theory: in geometry, the study of the conformai invariance of characteristic 
classes by Chern [4] and Simons [19]; in algebra, the work of Haboush [8] and 
Procesi [16] on the Mumford conjecture; in analysis the work of Gilkey [7] 
and Patodi's [15] study of invariants of the heat equation; and in combinator­
ics, Rota's work on Cayley spaces [18] and Stanley's on magic labeling of 
graphs [21] and the upper bound conjecture [22]. 

How this subject's popularity can swing so widely in only seven score years 
is a fascinating question in its own right, and I recommend the Death of a 
mathematical theory by Fisher [5] for an analysis of the question. 

Having sketched the historical position of invariant theory,1 I want to 
illustrate some of the problems and methods of the subject. The historical 
periods outlined above provide a natural setting for several apt examples. 

The naive period. Invariant theory is agreed to have begun with Boole's 
paper [1] in 1841, which inspired Cayley, Sylvester and the British school on 
Invariant Theory. They relied on ad hoc geometric techniques to confront 
such problems as, for example, finding all invariants of a pair of linear forms 
over the reals 

ax + by and ex + dy 

under the group of rotations in the (x9 >>)-plane. What this really means is the 
following. A rotation through the angle 9 takes a point (x*,y*) into (x,y) via 
the formula 

x = ;c*cos 9 — >>*sin 9 and y = x*sin 9 + >>*cos 9, 

and substitution of these formulas into the linear forms yields 

ax + by = (a cos 9 + b sin 9 )x* + (b cos 9 — a sin 9 )y* 
ex + dy = (c cos 9 + d sin 9 )x* + (d cos 9 — c sin 9 )y*, 

which induces an action on (a, 6, c, d): 

a* = a cos 9 + b sin 9 b* = b cos 9 — a sin 9 
c* = c cos 9 + d sin 9 d* — d cos 9 — c sin 9. 

The problem then is to find all polynomials in four variables over the integers 
that satisfy 

P(a,b,c,d) = P(a*,b*,c*,d*). 

A direct geometric analysis shows that the only geometric invariants are the 
length of the forms and the angle between them. The only polynomials arising 
from these quantities are of even degree and are generated as an algebra by 

a2 + Z>2, c2 + d2, ac + bd, ad - be. 
These generators satisfy the relation 

(ac + bd)2 + (ad - be)2 = (a2 + b2)(c2 + d2) 

which is classically called a syzygy, and the algebra of invariant polynomials 
turns out to be the homomorphic image of the polynomial algebra in four 

1The definitive history of invariant theory up to 1891 is Meyer's report to the Deutsche 
Mathematische Verein [13], 
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variables given by the quotient algebra 
Z[x,y, z, w]/ (z2 + w2 - xy). 

In particular, the algebra is finitely generated by four explicit polynomials, 
and the ideal of relations is finitely generated by a single explicit relation. 

The successes of this naive period were mainly of the type just illustrated; 
that is, a geometric configuration (such as a pair of quadratic forms in two 
variables, or a quartic in two variables) was studied for invariants under some 
group of linear transformations. The analysis generally involved difficult 
computation and geometric ingenuity; nevertheless the status of the young 
subject rose rapidly. As Weyl [24] (2), looking back, eulogized: "The Theory 
of Invariants came into existence about the middle of the nineteenth century 
somewhat like Minerva: a grown-up virgin, mailed in the shining armor of 
algebra, she sprang forth from Cayley's Jovian head. Her Athens over which 
she ruled and which she served as a tutelary and beneficent goddess was 
projective geometry." 

The formal period. This stage was marked by two major achievements: the 
structure of vector relative invariants, and the development of the symbolic 
method. The first, due largely to Cayley's invention of the Ü process and the 
establishment of the Capelli identity, is known as the first fundamental 
theorem of vector relative invariants for the general linear group. The ideas 
basic to this result can be quickly reviewed. 

Let AT be a field of characteristic zero, V an «-dimensional vector space, 
and W and m-dimcnsional vector space, both over K. If 

p: Aut^(F, V)-*A\xiK{W9 W) 

is a homogeneous polynomial representation, then a homogeneous poly­
nomial mapping 

ƒ: W-+K 

is called a relative invariant under p, if there exists a character 

X:AutK(V,V)^K 

such that for all g e Aut*(F, V) and for all x e. W 

f(p(g)x) = X(g)f(x). 
Since every such character x is a power of det g, this implies that 

/(p(g)*) = (de tg)* /« , 
where k is called the weight. Viewing this last equation as a polynomial map 
of n2 variables for g and n variables for x, one has 

deg ƒ deg p = k dim^ V. (*) 

The first fundamental theorem of relative vector invariants is concerned 
with the case 

W= ®p K a n d p = ®p. 

It states that if a linear mapping 

ƒ: ®p V-+K 

is a relative invariant, it is identically zero, unless/? is divisible by n, in which 
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case ƒ is characterized on monomials as a linear combination of mappings of 
the form 
ƒ(*! ® • • • ®x*„) = det(*a(1 ) , . . . , xa(n)) • • • dct(xa((k-l)n+l),..., xa{kn)\ 

where o Œ Sp, the permutation group on p letters. (See [6] for a modern 
proof.) 

The second achievement of the formal period was the development of a 
general method which, albeit a computational nightmare, led to a procedure 
for reducing the calculation of relative invariants of mixed tensors to the 
calculation of relative invariants of vectors and covectors. Largely the work 
of Aronhold, Clebsch, Gordon, and Weitzcnböck, this reduction is known as 
the symbolic method. To illustrate these ideas, I will restrict myself to relative 
invariants for tensors of type (p, 0), reserving remarks on the generalization 
to mixed tensors till later. 

The basic idea is to consider the image of an invariant under a duality 
isomorphism restricted to a particular spanning set. This image determines 
the invariant, and is in principle computable from the first fundamental 
theorem. Once the image is known, it is a formal process to recover the 
original invariant. 

For instance, let W be an invariant subspace of ®p V under the repre­
sentation ®p\ such a subspace is called a symmetry class of (/?, 0) tensors. A 
polynomial relative invariant ƒ of degree d of elements of W is an element of 
Sd(W), the polynomials of degree d defined on W. The first step used in the 
symbolic method is simply the duality isomorphism of Sd( W) and (© dW)*9 

the symmetric rf-multilfaiear mappings on W. (Note that the field K must be 
infinite for this identification.) Although classical calculations needed an 
explicit description of the isomorphism 

Sd(W)^(®dW)*. 
It now suffices to only know the existence of the isomorphism which is easily 
established by universal mapping properties. The mapping 

P: Sd(W)-»(®dW)* 
is classically known as polarization. Thus, given a polynomial relative in­
variant ƒ G Sd(W)9 then P{f) is a symmetric multilinear mapping 

/>(ƒ): Wx_,._,xW-»K. 

Since W c ® p V9 Wx ... xW c ® p Vx ... x <g> PV and />(ƒ) induces a 
linear relative invariant 

which can now be described by the first fundamental theorem. 
The second step in the symbolic method was to study these maps not on all 

elements of W, but only on a convenient spanning set. The usual example has 
W = SPV, in which case it suffices to know the map on purc/rth powers of 
elements of V9 since the span of such elements gives all of W. (Note that the 
rationals Q c K arc necessary to verify this statement.) The restriction of 
S (ƒ) to the elements coming from pure pth powers of F is a determinantal 
expression involving d vectors; this is called the symbolic expression for/. The 
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process of going back through these isomorphisms from the symbolic expres­
sion is classically called restitution. 

Let us look at the simple example of finding the relative invariants of a 
binary quadratic 

Q(x>y) — a\\xl + 2anxy + a22y
2. 

In this case V = K2 and W — S2V. It is most convenient to parameterize 
Q e S2V via the matrix 

\aX2 a22) 

for then we want polynomials f (A) that are relative invariants under the 
action 

p(T)A ='TAT. 

Now comes one of the stumbling blocks of the symbolic methods: we must 
consider the invariants one degree at a time. 

Thus we begin with relative invariants ƒ of degree 2, which are elements of 
S\S2V). Polarization gives rise to a bilinear map 

P(f): S2V X S2V-*K, 

which produces a linear mapping 

§(ƒ): ®4V^K. 
Next we must restrict this to pure powers in S2V. The pure powers in S2V are 
the elements of the form 

Q(x,y) = (vxx + v2y)2 — v2x2 + 2vxv2xy + v\y2 

and hence are those elements parameterized by matrices of the form 

A=s(v
2

x vxv2\ 
\vxv2 v2 ) 

or, equivalently, by elements in S2V c V ® V of the form 

v ® v where v —'(i^, v2). 

Once the formula has been deduced for these special elements then we get the 
formula for the general elements by restitution which replaces 

v2by au,vxv2by al2, and vjby a22. 

The restriction of P(ƒ) to pure power elements gives 

\\vxv2 vi ) \uxu2 w| / / 

where v —f(vv v2) a n ^ u ='(wi> u2)- Among the possible terms allowed for 
§(ƒ) by the fundamental theorem, only one is nontrivial. Thus, all the 
invariants have a symbolic expression 

S(/)(t> ® Ü ® W ® W ) = C det(ü, u)2 with c a constant. 
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Since 

det(t>, u) = v2u2 + w?ül — 2vxv2uxu2, 

restitution gives 

P(f)[al2 a22>bn b22) = «nb22 + bna22-2al2bl2 

and diagonal evaluation recovers 

This completes the consideration of degree 2 invariants. It is also possible to 
describe completely the invariants of all degrees for this special case of binary 
quadrics via the symbolic method (see Weyl [25, pp. 246-247]), but WeyPs 
ideas do not generalize to higher dimensions. 

The most difficult process in the symbolic method is the restitution step. 
This was not visible in the last example, where it simply consisted of replacing 
the elements vtVj by the matrix elements aiy Since the algebra of the 19th 
century lacked the setting we were able to give for this procedure, the 
expositors of the time found something mysterious in the step. Most papers 
stressed that the vi9 which never appear alone, do not exist by themselves. 
Sylvester went so far as to coin the term "umbra" for these objects, and called 
the techniques of the symbolic method the umbral calculus. 

Since the first example of the symbolic method was so simple, a sketch of a 
more complicated example may be helpful. Let us consider the problem of 
finding the relative invariants of binary quartics treated in Mumford [14]. 
Thus let 

Q(x,y) = a4x
4 + a3x

3y + a 2*V 4- axxy3 + a0y
4 

and take 

V - K2 mdJW= S4V. 
The pure powers in S4V look like 

v4 = (t^jc + v2y)4 = v4x4 + 4v*v2x
3y + ôv^vjx^2 

-f 4vxv\xy3 + v2y
4; 

hence the restitution process replaces 

»4r»ï by (*)"'«,• 
A relative invariant of degree 2 is an element ƒ E S\S\V)\ which gives 

rise to a linear relative invariant §(ƒ): ® 8 F-» K, whose symbolic expres­
sion is 

S ( / ) ( ü ® t ; ® ü ® t > ® w ® w ® w > ® w ) = c det (v, w)4, 

with c a constant. Since 

det (v, w)4 = v4w4 - 4v*v2wxw2 + 6v2vlw2w2 

— 4vxv\w\w2 + v2w
4

9 
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restitution produces P(ƒ) as 
a4b0 ~ \alb\ + 1̂ 2*2 - \a\b3 + aQbA 

and diagonal evaluation yields ƒ as 

\(a\ - 3axa3 + 12a0a4). 

Similarly, there is a relative invariant of degree three with symbolic expres­
sion 

S ( ƒ )(t> ®t>®t>®t>®W®W®W®W®W®U®W®tt) 

- c det(t), n>)2 det(w, t/)2 det(«, v)2. 

Restitution and diagonal evaluation produces ƒ as 

«0*2*4 - 1*0*3 - f *?*4 + 1*1*2*3 ~ 3Ê*2' 

The analogous problem for mixed tensors is handled by using the Poincaré 
duality of Gl( F)-modules 

^ : v*-*A"~lV 

to replace covectors by vectors. Note that this will result in a shift of weight 
for relative invariants, since given S G G1(F) and co G F*, then 

A"-!(S)4<«) - (det SMS" 1 *)) . 

The identification, <f>, which yields the embedding 

was the discovery of Weitzenböck and reduces the invariant theory of mixed 
tensors to the symbolic method. Note that the process of restitution is now 
more complicated, since the invariants have to be factored through this last 
identification. 

The full import of the symbolic method remains somewhat unclear. In the 
early 1940's, Littlewood opined "The most effective work in classical in­
variant theory is based on the symbolic method" [12, p. 306], while only a few 
years earlier Weyl averred "Certainly the importance of the symbolic method, 
whose formal elegance nobody will deny, has been greatly exaggerated" [24, 
p. 499]. 

In any event even the lowest dimensional cases of the symbolic method are 
still finding modern applications. Rota and Roman [17] for example, have 
applied these methods to combinatorial problems. The connection between 
their umbral calculus and my description deserves a word of comment. There 
is a classical, weighted identification between binary rt-ics and polynomials in 
one variable of degree n, given by 

2(")«,*"_y-*2^'. 

Hence pure powers on the left lead to 
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and restitution provides the substitutions 

The substitution on the right is the umbra discussed by Rota. 
The critical period. By 1888 students of invariant theory had spent twenty 

years trying to apply the symbolic method to ternary homogeneous polynomi­
als, in the hope of proving the analog of Gordon's 1868 finiteness theorem 
which showed that binary homogeneous polynomials have only a finite 
number of independent invariants. Hubert's iconoclastic basis theorem, fi­
nally broke the log jam for it was the key to proving not only the above 
ternary case but also the general finiteness theorem for /z-ary homogeneous 
polynomials. His work on invariant theory continued for five years, culminat­
ing in the 1893 paper that introduced homological dimension and proved his 
famous syzygy theorem. 

Let us outline Hubert's proof of the general finiteness theorem, he first 
showed that given any set §> c K[xx . . . JCJ, a polynomial ring over a field, 
there exists a finite number of polynomials f l 9 . . . , fn E S such that each 
ƒ E S can be expressed in the form 

/ = 2 ^ . with a, E K[xx, . . . , xY]. 

This is applied to invariant theory by taking K[xv . . . , xn] to be the poly­
nomial ring in the coefficients of the «-ary homogeneous polynomials, and by 
letting the set S be the set of relative invariants. Any invariant ƒ can then be 
expressed in terms of a finite set of invariants fv . • . ,ƒ„ as 

/ = S ^ . with aé E K[xx, . . . , xH]. 

To complete the finiteness theorem, one must show that the a( can be chosen 
in S. This required Cayley's Q process which is a projection operation 

Q:K[xv...,xn]-*S. 

Hilbert also was able to solve the second main problem of invariant theory 
which was concerned with how uniquely the fv . . . , fn represented an 
invariant. One of the first questions addressed was whether the syzygies (i.e., 
the relations among the fl9. . . , ƒ„) were finitely generated. It was doubly 
astounding to the mathematicians of the time that not only the general 
finiteness theorem, but also the finiteness of the syzygies was an immediate 
consequence of the basis theorem simply by taking 

§ ={geK[yl,...,yn]\g(fi,...,f„) = 0}, 

which is an ideal Bv 

Since the second main problem had succumbed so easily, it was natural to 
turn to chains of syzygies, studying relations among the generating set of 
relations, and so on. More precisely, this work involved the sequence of 
finitely generated K[yv . . . , jj-modules 
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0 -» J2 -* Fx -> Bx -* 0 
0 _> J3 -> F2 -» 72 -> 0 

0 -+ Jq -+ Fq -+ Jq_x -> 0, 

where the /} are free with rank equal to the minimal number of generators of 
the /th syzygies /,. The most obvious questions are how unique are the /, and 
the Fi9 and what invariants can be deduced from them. Hilbert's main 
theorem on the chains of syzygies says that the Jq = 0 if q > n. In effect, this 
launched the theory of homological dimension of rings. A good review of 
Hilbert's various contributions during this period is Weyl [23]. 

Post-Hilbert period. As mentioned in the introduction, although Hilbert 
declared invariant theory dead in 1893, not all believed his proclamation. One 
important advance that belied his pessimism was the extension of the 
methods of invariant theory to other groups especially the orthogonal group, 
the sympletic group and finite groups. Strictly speaking this activity belongs 
to the Critical Period, but it has such far ranging applications as a calcula-
tional tool that I choose to label it otherwise. In celebrating invariant theory 
as the ultimate technique of tensor analysis Weitzenböck and Littlewood were 
absolutely correct. Let me illustrate this by one example of an application of 
the first fundamental theorem of orthogonal vector invariants, which states 
that any polynomial invariant of n vectors for the orthogonal group is a 
polynomial in determinants and scalar products. 

The example is the computation of an integral that arises in the physics of a 
radiation filled universe: 

J (x • a)(x • b)(x • c)(x • d) dA 
JS3 

where a, b, c, d G R4 and x is the position vector of the 3-sphere. The integral 
is a function ƒ(#, b, c, d) which is invariant under the orthogonal group. This 
follows because a simultaneous orthogonal transformation on a, 6, c, d can 
be pushed off onto x and absorbed by the orthogonal invariance of the 
measure on S3. Since f (a, b, c, d) is linear in a, b, c, d and symmetric in all 
entries, the first fundamental theorem of orthogonal invariants implies 

/(a, b, c, d) = X[(a • b)(c • d) + {a • c) (b • d) + {a • d) (b • c)] 

where X has yet to be determined. Now, this formula must hold for all 
a, b, c, d hence for a = b = c = d and \a\ = 1, which yields 

f (x • a)4 dA = X. 
JS3 

If we take Y to be the position vector of the equatorial 2-sphere with pole a, 
we have 

x = sin <f>Y + cos <f>a 
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and 

f (x • a)4 dA = [ " (cos <|>)4(sin <J>)2 </</> f dA 
JS3 JQ JS2 

= 4TT 
32TT 

from which we deduce À = | . A similar but considerably more sophisticated 
calculation appears in Weyl's paper, On the volume of tubes [26]. 

In a different vein, considerable recent work has focused on Hubert's 
fourteenth problem, which asks what groups satisfy the finiteness theorem. 
The famous 1958 counterexample of Nagata [3] showed that the finiteness 
theorem is not always true, and Mumford's conjecture that reductive alge­
braic groups are geometrically reductive has been proven by Haboush [8]. J. 
Humphreys has recently written an elementary survey on these questions [11]. 

Attention has also been given to explicit computations of rings of in­
variants for given groups and to identifying the groups whose rings of 
invariants are polynomial rings. The most satisfactory results are for finite 
groups, where the finiteness theorem is known to hold. Molien developed an 
explicit representation for the power series whose ith coefficient is the 
dimension of the vector space of invariant polynomials of degree i. I recom­
mend to the reader Sloane's [20] for interesting applications of this theorem to 
the computation of invariants, and their applications to coding theory. Which 
finite groups have polynomial rings for rings of invariants has been answered 
by Chevalley [2]; they are the generalized reflection groups. 

The review. Having gotten the bird's eye view of the field, we can now turn 
to Springer's book. By his own admission, these notes give a very incomplete 
picture of invariant theory. The subject matter derives primarily from the 
Critical and Post-Hilbert periods, although many of Springer's examples were 
understood earlier. The notes are an enjoyable, readable account of the 
invariant theory of reductive algebraic groups, concentrating on delicate 
finiteness theorems. The general theory is illustrated by a detailed analysis of 
Sl(2, K) and finite groups. In particular, the above mentioned theorems of 
Molien and Chevalley-Serre are clearly presented and lead to interesting 
explicit calculations for classical reflection groups. 

I especially recommend these notes to any mathematician who wonders 
why finiteness theorems are important and how concepts like the integrality 
of extensions and Noether normalization arose historically. The author has 
included many references and notes at the end of each chapter, indicating 
where various results first occurred and why they're significant. 
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Characterizations of probability distributions\ by Janos Galambos and Samuel 
Kotz, Lecture Notes in Math., vol. 675, Springer-Verlag, Berlin-
Heidelberg-New York, 1978, viii + 169 pp., $9.80. 

Characterization of functions by their properties is a mathematical pursuit 
of long standing. If one is interested in phenomena in which the observable 
quantities are subject to chance variation, the most important "functions" are 
probability distributions which describe the chance variation. The problem of 
characterization of probability distributions can be described, in general 
terms, as follows: It is known that a family of distributions 3F possesses a 
certain property P̂ ; is it true, conversely, that a distribution has the property 
*P only if it is a member of 3F? If so, P̂ characterizes the family S\ This result 
is then referred to as a "characterization of the (5) distribution", in keeping 


