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SCATTERING THEORY FOR AUTOMORPHIC FUNCTIONS 

BY PETER D. LAX AND RALPH S. PHILLIPS1 

ABSTRACT. This paper is an expository account of our 1976 monograph [6] 
on Scattering theory for automorphic functions. Several improvements have 
been incorporated: a more direct proof of the meromorphic character of the 
Eisenstein series, an explicit formula for the translation representations and 
a simpler derivation of the spectral representations. Our hyperbolic ap
proach to the Selberg trace formula is also included. 

1. Introduction. In 1972 Faddeev and Pavlov [2] discovered a revealing 
connection between the harmonic analysis of functions automorphic with 
respect to a discrete subgroup of SL(2, R) and the Lax-Phillips scattering 
theory as applied to the non-Euclidean wave equation. Their work is based on 
the spectral theory for the Laplace-Beltrami operator previously developed by 
Faddeev [1] using elliptic arguments. In our 1976 monograph [6] we redid the 
Faddeev-Pavlov paper entirely within the framework of our theory, basing 
our development on the non-Euclidean wave equation. We obtained new 
treatments for (i) the spectral theory of the Laplace-Beltrami operator over 
noncompact domains of finite area; (ii) the meromorphic character of the 
Eisenstein series over the whole complex plane; and (iii) a new form of the 
Selberg trace formula. 

In this paper we sketch a revised version of our monograph including a 
more direct proof of the meromorphic character of the Eisenstein series, an 
explicit formula for the translation representations and a simpler derivation 
of the spectral representations. 

The harmonic analysis of automorphic functions has been extensively 
studied; references to the pertinent parts of this theory are contained in our 
monograph. We recall that the Poincafe plane II, that is the upper half plane 

w « x + fy9 y > 0, (1.1) 

serves as a model for a non-Euclidean geometry in which the motions are 
given by the group G of fractional linear transformations: 

w-> — j (1.2) 
cw + a v ' 

where a, b, c, d are real and 

ad- bc~ l; (1.3) 
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G is isomorphic with SL(2, R)/±I. The Riemannian metric 

dx2 + dy2 

^ (1.4) 
y 

is invariant under this group of motions. The invariant L2 form is 

II « 2 ^ f • (1.5) 
y 

The invariant Dirichlet form is 

ƒ ƒ {u2
x + uï)dxdy. (1.6) 

The corresponding Laplace-Beltrami operator 

L0 = y2A~y%d; + dy
2) (1.7) 

is then clearly invariant. It turns out that the operator L defined as 

L - L0 + 1/4, (1.7)' 

also invariant, has more useful analytic properties, as will be seen in what 
follows. 

A subgroup T of G is called discrete if the identity is not a limit point of I\ 
A fundamental domain F for a discrete subgroup T isji subdomain of II such 
that every point of II can be carried into a point of F by a transformation in 
T and no point of F is carried into another point of F by such a transforma
tion. A function ƒ defined on II is called automorphic with respect to T if 

f(yw)=f(w) (1.8) 

for all y in T. Because of_(1.8) an automorphic function is completely 
determined by its values on F. If ƒ is continuous then (1.8) imposes a relation 
between values of ƒ at those pairs of boundary points of F which can be 
mapped into each other by some y in T. If ƒ is C1, then (1.8) imposes a similar 
relation on the first derivatives of ƒ at such pairs of boundary points. 

The Laplace-Beltrami operator, being invariant, maps automorphic func
tions into automorphic functions. Alternatively we can consider automorphic 
functions as being defined on F: In this case we introduce the space L2(F) of 
functions on F square integrable with respect to the invariant measure and 
define L as the self adjoint extension of the differential operator defined by 
(1.7)', subject to the above mentioned boundary conditions. 

We shall study the spectral properties of L by means of the non-Euclidean 
wave equation 

utt = y2Au + u/4 = Lu. (1.9) 

This turns out to be a convenient analytic tool. As Semenov-Tian-Shansky 
[11] has recently shown, this equation also has an intrinsic meaning in the Lie 
algebra framework for problems of this kind. Indeed many of the classical 
concepts previously introduced in the study of these problems (see Kubota 
[4]) appear in a natural way in the scattering theory setting for the non-
Euclidean wave equation. In particular the translation representations for the 
wave equation are closely related to the Radon transform associated with 
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symmetric spaces as well as the theta series employed by Kubota in the study 
of Eisenstein series. 

Perhaps the simplest discrete subgroup of G is the modular group, consist
ing of the fractional linear transformations with a, 6, c, d integers satisfying 
(1.3). A convenient fundamental domain for this subgroup is the geodesic 
triangle 

F: -1 /2 < x < 1/2, y > V l - x 2 , (1.10) 

For the sake of simplicity, most of the detailed discussion in this paper will be 
carried out for this spectral subgroup. 

We conclude this introduction with a brief description of our abstract 
scattering theory and its application to the classical wave equation in 
Euclidean space. For details we refer to our book [5]. The theory concerns a 
one-parameter group of unitary operators U{i) acting on a Hubert space % 
for which there exist certain subspaces 6D_ and ^D .̂, called incoming and 
outgoing with the following properties: 

(i) U(t)fy_ c 6D_ for t < 0 and U(t)fy+ C 3>+ for t > 0, 

(n) n um_ - {0} = n um+> 
(iii) U tf(03)- - 9C - U U(t)<$+ . (1.11) 

An example of an outgoing subspace is given by the following: % = 
L2(R, 91), 91 some auxiliary Hubert space, U(t) translation to the right by an 
amount t, and <ï>+ = L2(R+, ^ ) * ** t u r n s o u t * a t ^ s c*ass °f examples 
exhausts all possibilities since every Hilbert space % with a unitary group for 
which there is an outgoing subspace can be represented as above, essentially 
uniquely; this is called the outgoing translation representation of %. Corre
sponding to an incoming subspace there is an incoming translation repre
sentation in which tf)_ maps onto L2(R_, 91). 

In the applications of the theory we are about to describe, t represents time 
and the group U(t) describes the propagation of waves. The significance of 
incoming and outgoing subspaces for wave propagation is that they furnish 
an asymptotic description of signals in the remote past and distant future 
respectively. The scattering operator S relates the incoming translation repré
senter of a given data to its outgoing représenter. Thus S gives a description 
of the scattering process, i.e. it relates directly the asymptotic behavior of 
waves for large negative and positive times. 

S maps L2(R, 91) onto itself; since it relates two translation representations 
it is unitary and commutes with translation. Therefore S is convolution with 
an operator valued distribution (% -» 91) called the scattering function and 
denoted as S(t) (cf. [7]). 

This approach is particularly fruitful when D̂_ and ^ are orthogonal to 
each other; in this case S is a so-called causal operator, in the sense that the 
scattering function S(t) = 0 for t > 0. In this case the Fourier transform of 
S(t), called the scattering matrix and denoted as S (z), is analytic in the lower 
half plane. It turns out that many important properties of the scattering 
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process can be related to the behavior of the meromorphic continuation of 
S (z) into the upper half plane. 

This connection can be studied most directly through the one-parameter 
semigroup of operators Z(/), carved out of the group U{i) as follows: 

Z(/) = P+U(t)P_, t > 0, (1.12) 

where P+ and P„ are the orthogonal projections that remove the components 
of data that belong to <>D+ and <>D_, respectively. It is easy to show that Z(/), 
t > 0, annihilates 6D+ and <5D_ and acts as a semigroup of operators on 
% = % 0 (<3L © <3)+). The resolvent of the infinitesimal generator of Z 
turns out to be intimately related to the scattering matrix. 

Before returning to the automorphic case we would like to indicate how 
these ideas are used to study wave propagation in Euclidean space in the 
presence of an obstacle 0. In the exterior S of the obstacle the signal satisfies 
the Euclidean wave equation: 

utt « Aw. (1.13) 

The interaction of the wave with the obstacle is described as a boundary 
condition on u; if the interaction conserves the energy contained in the wave, 
the boundary condition makes A a selfadjoint operator on L2(&). Typical of 
such boundary conditions are u = 0 (or dnu = 0) on 30. 

The underlying Hubert space is the space of initial data {u, ut} defined on 
S and normed by the energy norm: 

E&{u) = - (w, Aw)g + (w„ ut)&9 (1.14) 

where ( , ) s denotes the L2 inner product over S. Since A is selfadjoint, E&(u) 
is independent of / for solutions u of (1.14) satisfying the boundary condi
tions. This shows that the operator U(t) relating initial data at time 0 to data 
at time t is an isometry; since the initial-boundary value problem is reversible 
in time and can be solved for a dense set of data, the operators U(i) are 
actually unitary and form a group. 

We call a solution u outgoing if u(x, t) = 0 at all points x whose distance 
from the boundary is less than t; an incoming solution is described similarly 
with t replaced by -t. 'ÏL and 6D+ are defined as the initial data of incoming 
and outgoing solutions, respectively. Properties (i) and (ii) can be immediately 
verified; property (iii) lies considerably deeper and says essentially that all 
incoming signals eventually become outgoing signals after a complicated 
process of reflection from the boundary. 

Roughly speaking, the same picture can be painted of automorphic waves 
over noncompact fundamental domains. Signals coming in from or going out 
to infinity can be defined analogously. Again one of the main results to be 
proved is that all incoming signals are eventually turned into outgoing signals. 
The analysis is complicated by the possible presence of standing waves due to 
a rather rich point spectrum, and of exponentially increasing solutions due to 
the indefiniteness of the energy form. A treatment of the corresponding free 
space problem can be found in [8]. 

2. The non-Euclidean wave equation. The first step in our analysis consists 
in finding a suitable Hubert space setting for the initial value problem 
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associated with the non-Euclidean wave equation: 

utt = Lu, 

«(*> 0) - M*), ut(x9 0) - f2(x). (2.1) 

For a more complete treatment we refer the reader to [6, § 5]. 
In terms of the L2(F) inner product ( , )F, the energy form for the wave 

equation is 

EF{u) = - (w, Lu)F + (i*„ ut)F. (2.2) 

Since L is selfadjoint in L2(F\ EF(u) is independent of t for automorphic 
solutions of (2.1). In general EF is indefinite for automorphic data; this can 
be seen if we bring (2.2) into a more symmetric form by an integration by 
parts: 

EF{u) - ƒ ƒ | k|2 + I*/ - J £ + M J rfx *. (2.2)' 

The indefiniteness introduces complications analogous to those produced by 
bound states in the theory of scattering for quantum mechanics (see 
[5, Chapter 6]). 

It is useful at this point to write the energy form in a way which depends 
on the shape of the fundamental domain F. In the case of the modular group 
with fundamental domain described in (1.10) we split F up into two parts: 

F0~Fn{y< a}y (2.3)0 

which is compact, and a neighborhood of infinity 

Fi~Fn{Y>a); (23)x 

here a is restricted to be > 1. Writing (2.2)' as the sum of integrals over FQ 

and FY an integrating by parts over Fl9 the energy form becomes 

M«)-ff (KI2 + K I 2 - ^ + I ^ ) ^ ^ 

+ / / [k l2 + .v dx dy 

- f 
2a J_ 

1/2 , . . , . . _x,2 

V7 
u(x, a)\2 dx. (2.2)" 

-1/2 

From now on we omit the subscript F except where it is needed for clarity. 
Next we introduce a new form which is very close to (2.2)" but which has 

the advantage of being positive definite: 

G(u) = E(u) + 2K(u), (2.4) 

where 

K(u) = ƒ ƒ 14- àx dy. (2.5) 
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Notice that for data with support in F, the E and G forms are the same. It 
can be shown by simple estimates that G is positive definite and equivalent 
with 

+ ƒƒ {Wj2^yk-^r\2)dxdy + ff ^dxdy. (2.6) 
Fx { \ vy \ ) F y 

00 

By Rellich's theorem, K is compact with respect to G'. 
We denote by %G the completion in the G-norm of the space of C 

automorphic data with compact support in F. Since the K-îorm is compact 
with respect to the G-form it follows that the E and G-forms are equivalent 
on any closed subspace of %G on which E is positive. 

In order to treat u and ut on an equal footing we rewrite the wave equation 
in component form as 

ut = v, vt = Lu; (2.7) 

or in matrix notation as 

Vt~AV (2.7)' 

where 

F - ( ; ) and A-(l $ (2.7)* 

We take as D(A), the domain of A, the set of data (w, v) for which both 
(w, v) and (t>, Lu) belongs to %G, Lu being defined in the weak sense. It can 
be shown that A generates on %G a group of bounded operators U(t) which 
grow exponentially in the G-norm but are unitary with respect to the 
indefinite energy form E. Since (2.1) is hyperbolic, signals carried by solutions 
of (2.1) propagate with non-Euclidean speed < 1. 

Of particular interest to us are certain subspaces of %G which we call 
incoming and outgoing spaces and denote by ÓD_ and (5D+, respectively. For 
the modular group and F of the form (1.10) these subspaces are the initial 
data for solutions of (2.1) with support in Fx and which are independent of x 
for t < 0 (t > 0) in the case of <$>_ (<$>+); see §6 of [6]. A solution of (2.1) 
which is independent of x satisfies the differential equation 

utt - y2Au + w/4. (2.8) 

The change of variables 

s = logj>, v - u/Vy , (2.9) 

transforms (2.8) into the classsical wave equation: 

vtt - *„, (2.10) 

whose general solution is 

0 - l(s+ t) + r(s- t). (2.11) 

The first term on the right corresponds to a wave traveling to the left, the 
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second term to a wave traveling to the right. The corresponding incoming and 
outgoing solutions of (2.1) are of the form 

^ , 0 = y / 2 ^ " 0 ; (2.12)+ 
here <p is chosen to be C00 and vanishing for y < a. 

We define the incoming and outgoing subspaces ^ i as the closure in %G 

of the initial data of the above respective incoming and outgoing solutions: 

3L - closure{^1/2<p(^)^3/V(^)}, 

3)+ - closure^^«pOO, -y3/2<p'(y)}> (2.13) 

<p in C00, zero for y < a, <p' = dy<p. 
It is clear from this that 6S)± have the properties, see (1.11): 

(i) I / (0^± C ^ ± f o r / ^ 0 , 

(n) n um_ - {0} - n £W+. (2.14) 
The change of variables (2.9) maps the energy form E defined by (2.2)' into 
the classical energy form /{|t>J2 + \vt\

2} ds for (2.10). In these variables a 
trivial calculation shows that 

<>D_ and <>i)+ are ^-orthogonal. (2.14)" 

Since data in fy_ and <$>+ are zero in F0, it follows that <3L and <>D+ are also 
G-orthogonal. 

We denote the zero Fourier coefficient of ƒ with respect to x by/(0): 

fV>(y) - (l/2f(x,y) dx, y>a. (2.15) 
J-\/2 

Suppose the data ƒ = (fi,f2) in 3Q? is is-orthogonal to 6D_ ; it is easy to show 
by using the definition (2.13)_ of ÓD_ and the jE'-scalar product derived from 
(2.2)" that the components of/(0) satisfy 

fp--yV2Jjj^\ ioxy>a9 (2.i6)_ 

Similarly if it is is-orthogonal to 6D+ then 

fp = y3/2jjt\ {oiy>a. (2 .16)+ 

If ƒ in %G is orthogonal to both 6D_ and 6D+ then (2.16) implies that the zero 
Fourier coefficient of ƒ is of the form 

ƒ«>) = (CV7 , 0) for^ > a. (2.17) 

We denote the set of all such data by %: 

% - 3 C G e ( ^ _ e<3)+). (2.18) 

The next theorem is the basic technical tool in this application of our 
scattering theory. 
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THEOREM 2.1. For every X in the resolvent set of A, the resolvent operator 
(XI — A)~l maps the unit ball in % into a compact subset of %G. 

We give a new proof of this theorem in the appendix. 

COROLLARY 2.2. A has at most a denumerable set of eigenfunctions in % and 
the corresponding eigenvalues are discrete. 

3. The associated semigroup of operators. In this section the group of 
operators U and the incoming and outgoing subspaces are combined to form 
a semigroup of operators which plays an important role in our theory. 

To this end we introduce the orthogonal projections P_ and P+ which 
remove the 6D_ and <$+ components, respectively. Again since the G and 
informs are the same for j> > a, P± is orthogonal with respect to both forms. 
Notice also that since <3L and 6D+ are orthogonal, 

JP = P_ +P+ (3.1) 

is the orthogonal projection on %. Using the relations (2.16) and (2.17) it is 
easy to verify for any ƒ in %G that g = Pf can be decribed as follows: 

g = ƒ for y < a, 
fy\l/24 for y > a. (3.2) 

We now set 

Z(t) = P+U(t)P„ for t > 0. (3.3) 

THEOREM 3.1. The operators Z(t\ t > 0, form a strongly continuous semi
group of operators on %. Z(t) annihilates both 6D_ and ^D .̂. 

A proof of this theorem can be based entirely on the properties (2.14), and 
(2.14X (see Theorem 2.7 of [6]). 

We denote the infinitesimal generator of Z(t) by B. We have noted earlier 
that U grows at most exponentially: 

|| (/(OH <C*"M. (3.4),, 
Obviously Z satisfies an analogous inequality: 

| |Z(0|| < Ce"'. (3.4)z 

Consequently for ƒ in % and Re X > w we can write 

(XI~B)-Xf= f™ e~x'Z(t)fdt Jo 

f e~x'U(t)fdt = P+(XI~A)-lf. (3.5) 
o 

Combining this with Theorem 2.1 we can now state 

THEOREM 3.2 The resolvent of B is compact on %. 

COROLLARY 3.3. The resolvent of B is meromorphic in the entire complex 
plane and B has a pure point spectrum. 
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Since by (2.14) t/(/)<3)+ C 6Ö+ for t > 0, we see that 

P + { ƒ ( > ) ( / ~ i \ ) = 0. (3.6) 

Hence for/orthogonal to <?)_ we have 

z{t)p+ ƒ - P+u(t)p+ ƒ = p + t f (0 / . 

If in addition ƒ belongs to the domain of A, then we can differentiate the 
above relation at t = 0 and obtain 

BP+f~P+Af, (3.7) 

a relation we shall use in §4. 

4. The Eisenstein series and its analytic continuation. We are now ready to 
construct the generalized eigenfunctions of A associated with the continuous 
part of its spectrum. It is readily verified that for any complex z the data 

h(w) « {yl'2+u
9 izyl'2+" } (4.1) 

locally satisfies 
Ah « fcft. (4.2) 

Since A is invariant, the function hy(w) = /j(yw) satisfies 

,4/*Y - izhy (4.2)' 

for every y in G. Since A is by definition independent of x, it is automorphic 
with respect to the subgroup T^ consisting of y: w -» w + n, n integer; that is 

h(yw) - A(w), y G T„. (4.3) 

In order to construct an automorphic function out of h for the entire modular 
group T we have to sum h(yw) over all right cosets of T modulo T^. This sum 
is the Eisenstein series: 

e(w,z)= S Kyw). (4.4) 
Yerw\r 

It is well known that this series converges for Im z < -1 /2 ; except for the 
first term h(w), the series converges in the G-norm for such z. Since (A — iz) 
annihilates each term we conclude that 

(A - iz)e = 0 (4.5) 
in the sense of distributions for Im z < -1/2 . It follows from elliptic regular
ity theory that e is C00 and satisfies (4.5) pointwise. 

Recall the definition (2.7)" of A as (°L J); it follows from this and (4.5) that 
the first component ex of e satisfies the equation 

Lex = -z2ev (4.6) 

Integrating this with respect to x gives the following ordinary differential 
equation for the zero Fourier coefficient of ex: 

(y\2 + l/4)e1
(0> - ~z2ef\ (4.6)' 

The solutions to this equation are superpositions ofyK, where K satisfies 

K(K - 1) + 1/4 - -z2, 
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that is K = 1/2 ± iz. Since by (4.5), e2 = izex we deduce for lm z < -1 /2 
that the zero Fourier coefficient of e defined by (4.4) is of the form 

eW>(y9 z) - {y1'2**, izy^2+iz } + s{z){yx^'uy izy^2~iz }, (4.7) 

where s(z) is some function of z. A straightforward calculation, using (4.4), 
shows that 

S{Z) " T(l/2 + fc)fO + 2iz) ' K } 

£ being the Riemann f-function. 
Recalling the definition of P described in (3.2), it is clear that Pe has finite 

G-norm and hence belongs to %. For our purposes it is more convenient to 
truncate e in a somewhat different fashion but still bring it into %. We 
choose 

l<a0<b<c<a (4.8) 

and£inC°°(R)sothat 

We now define ƒ equal to e except for the zero Fourier coefficient in the 
region >> > b where we set 

/(O)O0 - {yl/2&iz,y3/2(&iz)'} + *00{ / / 2 -* , izy^2~iz}. (4.9) 
It follows from the above discussion that ƒ belongs to %G and from (2.16)_ 
that ƒ is orthogonal to ^D_. Comparing (4.7) and (4.9) shows that 

ƒ = e + {//*(€ _ \)y'\yy\<£ - I ) /* ) ' } ; (4.9)' 

clearly ƒ belongs to D(A) when Im z < -1 /2 . It follows then from (4.5) that 

Af=izf+k, (4.10) 
where 

k - fc«» = {yl/2Çyl+i\y3/2(è'yl+iz)'}. (4.11) 

Recalling the definition of 6D±, it is clear that k is orthogonal to <>D_ and ^ 
and so lies in % ; one sees by inspection that k(z) is an entire function of z. 

Next we operate on (4.10) by P+; since k lies in %, P+k = k and hence 
we get 

P+Af=izP+f+k. (4.12) 

Set g = P+ ƒ. Since ƒ is orthogonal to D̂_ and belongs to DC4), the relation 
(3.7) is applicable. Using (4.12) we obtain 

Eg - izg + k. (4.13) 

For iz in the resolvent set of B, the relation (4.13) can be rewritten as 

g « - ( f e / - 5)"1*:. (4.14) 

We conclude from this and Corollary 3.3 that 
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LEMMA 4.1. g(z) can be extended to be meromorphic in the whole complex 
plane, having poles at most at the points -i times the spectrum of B, that is 
-io(B). 

We can now prove 

THEOREM 4.2. The Eisenstein series e can be extended to be meromorphic in 
the whole complex plane with poles at most at the points ~io(B)\ the analytic 
continuation of e is an eigenfunction of A, 

REMARK. The analytic continuation of Pe(z) is in the %G topology, that of 
the zero Fourier coefficient of e is pointwise. 

PROOF. By construction e(z) = g(z) for Imz < -1 /2 except for the zero 
Fourier coefficient when y > b and there e(0)(z) is given by (4.7) which holds 
for y > a0. We see from (3.2) that the action of P + effects only the zero 
Fourier coefficient of data and this only for y > a. Hence it follows from 
(4.9)' and (4.8) that the zero Fourier coefficient of g(z) is also given by (4.7) 
for a0 <y < b. Thus for Im z < -1 /2 , e(w, z) can be reconstructed from 
g(w, z). Now according to Lemma 4.1, g(z) has an analytic continuation into 
-/ times the resolvent set of B, in symbols -ip{B). Since the first term in (4.7) 
obviously extends analytically into -ip(B) so does the second; in particular 
s(z) can be continued analytically into this region. Finally we note that this 
implies that the relation (45) can also be continued analytically at least in the 
sense of distributions. It then follows by elliptic regularity theory that the so 
extended function satisfies (4.5) in the pointwise sense. This completes the 
proof of Theorem 4.2. 

From formula (4.7) we conclude 

COROLLARY 4.3. The poles of s(z) occur at most at the points -io(B). 

5. The translation representations. So far we have managed to avoid the 
complications which result from the energy form being indefinite; in fact E 
has played only a minor role in our discussion. We must now confront this 
problem. 

By definition G = E + 2K; since K is compact with respect to G, E is 
positive on a subspace of finite codimension. It is clear from the expression 
(2.2) that E is nonnegative on the ^-orthogonal complement of the positive 
eigenspaces of L. Denote the positive eigenfunctions and eigenvalues of L by 
(4j, tyj - 1 , . . . , m with \j > 0: 

Lqj - *fo. (5.1) 

We set 

ff - UP ± ^ } . (5.2) 

It is easy to verify that ff- belongs to %G and that 

4 / r = ±A>T; (5.1)' 

E{fj+,fk+)-0-E(fj-Jk-) foralUA:; (5.3) 
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and 

fO fory^A:, 

We now set 

<3>+ - span of{jC+}, «P̂  - span ol{ff}9 

9 = # + + <3)_ (5.4) 

and denote the ZT-orthogonal complement of 9 in %G by %G. E is nonnega-
tive on %G, positive if A has no null vectors. 

We denote by Q' the ^-orthogonal projection of %G onto %G; using 
formulas (5.3) and (5.3)' we can write 

where 

a/ - EU,fj-)/\j, af = E(f,f+)/\]. (5.5)' 

If A has null vectors, they will span a finite dimensional subspace % and on 

the quotient space 

Z? is positive definite and equivalent to G. Clearly %E is an invariant space 
for the operator U(t). 

It is easy to show that 

3L ±S>+, <$+ -L#_ and ? n l = { 0 } = 9 n 60+ , (5.6) 

but it is not true in general that <>D_±*P_ or that ty+±<$+; thus the 
subspaces <>D_ and ^ do WÖ/ in general lie in %E. The next best thing is to 
replace 6D± in our considerations by their is-orthogonal projections ^ i in 
9Q; that is by 

Strictly speaking one has to mod out \ in the right member of (5.6)'; however 
since 6i)± n % = {0} this causes no confusion. 

The projection operator Q' commutes with U(t). It follows from this and 
properties (2.14) (i) and (ii) that 

(i) U(t)<%'± C6!) ; f o r / ^ 0 , 

(Ü) n u m i - {0} - n u(tw+. (5J) 

It can be shown that ^ also satisfy 

(iii) ( J U{t)<%L - 3C; - U U{t)W+ , 

where 3CC' is the J£-orthogonal complement of the eigenfunctions of A in %E. 
For the proof of this property we refer to Corollary 6.14 of our monograph 
[6]; the main ingredient of the proof is Theorem 2.1. 

According to the translation representation theorem (see Chapter 2 of [6]), 
any subspace satisfying (i)_-(iii)_ (or (i)+-(iii)+) of (5.7) can be used to 
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construct a translation representation of 3CC', i.e. a unitary map T„ (or T+) of 
3CC' onto a vector valued space of functions of the form L2(R, 91), 91 being 
an auxiliary Hubert space, with the properties: 

T± : ƒ E 3C; -> * ± G L2(R, 91), (5.8) 

(a) £ ( ƒ ) - ƒ | |*± | | ! t*, 

(j8) t / ( 0 / ->* ± (*~ ' )> 
(y) r ± maps <$>; onto L2(R±, 91). 

We need not rely on this general existence theorem for we can, as we shall 
show below, obtain explicit formulas for these primed translation representa
tions. We treat only the ^-representation but it will be clear that the 
tf)L -representation can be treated analogously. We begin by constructing a 
translation representation for the elements of U(t)tf)+. Given automorphic 
data ƒ = (fi,f2) defined on all II with locally finite G-norm, denote, as in 
(2.15), by JJ.(0) the zero Fourier coefficients of/, i = 1, 2: 

f?\y) - C/2fi{x,y) dxy 0 <>> < oo. (5.9) 
•J-1/2 

We define the translation représenter of ƒ to be 

T+ ƒ - ^ r - frCe^fV)) - e~^jf\e% -oo < 5 < oo. (5.10)+ 

It is easy to see that T+ is a linear mapping, continuous from %G into 
Lj*(R). 

LEMMA 5.1. r+ commutes with translations: 

T+U(t)f=T(t)T+f; (5.11) 

Aere T(/) denotes translation to the right by t units. 

PROOF. Let u(x, y, i) be the solution to the non-Euclidean wave equation 
with automorphic initial data/: 

utt = Lu; t/(0) = f{ and w,(°) = ƒ2-

Then for each time /, u will be automorphic and in particular it will be 
periodic in x of period 1 for all y > 0. The zero Fourier coefficient w(0)(.y, 0 
will therefore satisfy the equation 

w(0)=>,2M(0) + t/(0)/4 forallj^ > 0. (5.12) 

As we have seen in §2, the change of variables 

s - logy, v » «(0>/V7 (5.13) 

transforms (5.12) into the classical wave equation: 

v« - «*; (5-14) 
the initial data goes over into 

v(0) = e~s/2f{°\es) and t>,(0) - e~^2ff\esy (5.15) 
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Setting 

k(s, t) = vs- vr (5.16) 

it follows from (5.10) and (5.15) that 

* ( s , 0 ) = V ~ 2 r + ƒ. (5.17)0 

Since the solution data at time t is U(i)f we have similarly 

k(s,i)-V2T+U(t)f. (5.17), 

Combining (5.14) and (5.16) we see that 

dtk + dsk = 0 

and hence that 

k(s,t)~ k(s- *,0). (5d8) 

Finally on combining (5.18) with (5.17) we obtain the assertion of the lemma. 
Note that in the proof of Lemma 5.1 we used only the fact that ƒ was 

periodic in x with period 1. We therefore have 

COROLLARY 5.2 Let f be data periodic in x with period 1 and with locally 
finite G-norm. Define T+ as before by (5.9) and (5.10)+. Then Lemma 5.1 holds 
M/. 

Next we consider data d0 defined as in (2.13): 

do-{yl/39(y),-y3/\'{y)) (5.19) 

where <p lies in C0°°(R) and vanishes for y < a. Since d0 is periodic in x, the 
corresponding data d obtained by summing its y-translates over the right 
cosets T^ \ T is automorphic: 

<*(")- 2 d0(yw). (5.20) 
TooNr 

Since <p = 0 for y < a, d0(w) = 0 for y < a; so dQ(yw) = 0 for w in F and 
y & T^ and therefore d = d0 on the fundamental domain F; hence (5.19) 
shows that d belongs to ^D+. As we showed in §2, the solution of the 
non-Euclidean wave equation with initial data d0 of the form (5.19) is given 
by 

« o ( w , 0 = / / 2 ^ ) . (5.21) 

Clearly u0(w, t) is periodic in x. The automorphic solution of the non-
Euclidean wave equation with initial data d given by (5.20) is 

u(w,t)= 2 «o(Y*M)- (5.20), 
roo\r 

The reasoning used above shows that u(w91) = w0(w, i) for w in F and t > 0. 

LEMMA 5.3. For d0 and d given by (5.19) and (5.20), respectively, 
(a) T+dQ - T+d; 

Q>)EF{d)=r \T+d\2ds. 
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PROOF. Since u = u0 in F f or t > 0, we have 

T+(U(t)d ) = T+(U(t)d0) for f > 0 and s > log a. 

Using this relation and (5.11) of Lemma 5.1 and its corollary, we conclude 
that 

T(t) T+d = T(t) T+d0 for t > 0 and s > log a. 

Since this holds for all / > 0, it follows that it must hold for all s. This proves 
part (a). 

Substituting (5.19) into the definition (5.10)+ of T+ we obtain 

r + r f 0 =V"2ey(e*)- (5.22) 

The proof of part (b) is now immediate since by definition (2.2)" 

= 2 f °° y \<pf dy = lC e ^ V ) ! 2 * (5-23) 
•'O • ' -oo 

which by (5.22) 

= r\T+d0\
2ds. 

Combining this with the assertion of part (a) gives part (b). This completes 
the proof of the lemma. 

Combining Lemma 5.3 with Lemma 5.1 and its corollary, we deduce the 
following 

COROLLARY 5.4. (a) T+(U(t)d0) « T+(U(t)d); 

0>)Ef{U(t)d)=r\T+d\2ds. 
• ' -oo 

We are now ready to construct the ^-translation representaion. Recall 
that <ï>+ = Ö/ÓÖ+ ; that is the elements d+ of <>D+ are obtained by projecting 
the elements d+ of ^D+ into %'E: 

d'+ = d+ +p_ +p+, 

where p± belongs to <3)
±. According to (5.6), 6D+ is orthogonal to 3P_ and it 

follows from this and the relations (5.5) and (5.5)' that/?+ = 0: 

d'+ « d+ +/>_. (5.24) 

Using (5.3) and (5.3)' we deduce that 

EF{d+) - EF{d'+). (5.25) 

This shows that Q' defines an isometric map on tf)+ to <$)+. It follows that 
the translation représenter of d+ can be obtained directly by means of the 
operator T+ as we now prove: 

LEMMA 5.5. T+d'+ = T+rf+. 
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PROOF. Since d+ and d+ differ only by an element of P̂_ and since ^P_ is 
spanned by the {ff} of (5.2), it suffices to show that 

T+ ff - 0. (5.26) 

We note that U(i)ff = e'^'ff. Using this fact and Lemma 5.1 we conclude 
that 

T+ ff = const «V. (5.27) 

As noted in (5.6), P̂_ is orthogonal to 6D+ ; we now show that T+ ƒ = 0 for 
s > log a for any element ƒ in %G which is orthogonal to ^D .̂ To see this 
take d in ^D+ of the form (5.20); the restriction of d to F is given by (5.19). 
Hence we have 

Performing that x integration, we can replace fx and f2 by their zero Fourier 
coefficients /J0) and ffp; changing the other variable of integration y into 
s = log y, the above equation becomes 

0 = pRC^2/,) - e-*/2/2R^Ö ds. 
Recalling the definition (5.10)+ of T+ we see that this relation says that T+ ƒ 
is L2-orthogonal to ds<p(es). Since such functions are dense in L2(R+ + log a), 
we can conclude that T+ ƒ = 0 for s > log a. Comparing this with (5.27) we 
see that T+ ff = 0. 

LEMMA 5.6. (a) Let p be an eigenfunction of L with negative eigenvalue -v2. 
Denote by g± = {/?, ± ivp) the corresponding eigenfunctions of A. Then 

T+(g±) - 0. 
(b) Let ƒ be an arbitrary automorphic data in %'E and denote by fc the 

projection of f into %'c. Then 

r + / = r + / ; . (5.28) 

PROOF. The proof of (a) is entirely analogous to that of (5.26) since g± 

belongs to the point spectrum of A in %'E and because of this can easily be 
shown to be orthogonal to ^ t anc* hence to be orthogonal to 6i)±. Part (b) 
follows from part (a) since ƒ — fc can be expanded as a convergent series in 
eigenfunctions of the kind considered in part (a). Recalling that T+ is 
continuous from %G to Ü™ and that the G and E norms are equivalent on 
%'E, assertion (b) now follows. 

THEOREM 5.7. T+ is the ^'^-translation representation of %'c. 

PROOF. We shall verify properties (5.8) where auxiliary Hilbert space 91 is 
C: By Lemma 5.1, T+ is a translation representation and hence satisfies 
property (/?). By part (b) of Lemma 5.3, T+ is isometric on tf)+. Formula 
(5.22) shows that T+ maps ^ + onto L2(R + log a, C). Since by Lemma 5.5, 
T+d'+ = T+d+ and by (5.25) EF(d+) = EF(d+), it follows that T+ maps <%'+ 
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isometrically onto L2(R + log a, Q. This proves property (y). Since by prop
erty (iii) of (5.7) the translates of <ï>+ by U(i) span 5CC' and since the isometry 
persists under such translations, it follows that T+ is unitary and hence is an 
outgoing translation representation of 3CC' with respect to ̂ . 

The analogue of Theorem 5.7 holds for the <3)1 -translation representation 
of 3CC' with T+ replaced by 

r . ƒ - ~[99(e'^(e")) - e"Jf>(e-)]. (5.10). 
V2 

Formulas (5.10)± are the explicit translation representation formulas 
alluded to in the introduction. We recall that for the Euclidean wave 
equation, the translation representation is given in terms of the Radon 
transform of the data defined by integrals along all straight lines in the plane. 
The integrals in (5.8) are over a one-parameter set of curves in F that are the 
images of the horocycles through infinity under the projection of the Poincaré 
plane II onto F. 

The inversion of T+ can be accomplished in three steps. Let k(s) = 3P+ ƒ 
and define <p by 

<p(y) - f °gy k(s) *• 
• ' -oo 

(i) Set 

(ii) Define 

* ( " ) - 2 *O(Y*0- (5.31) 

(iii) Project g into %'G : 

f-Q'g- (5.32) 

PROOF. Suppose ƒ belongs to <$+. Then by definition there exists a rf+ in 
<$>+ such that Q'd+ = d'+ = ƒ. It is clear from (5.19), (5.20) and (5.22) that g, 
defined as above, is this d+; this proves (5.32) when ƒ E ^D+. Next suppose 
that ƒ = U(t)d+; then, since Q' commutes with U(t)9f= Q'U(t)d+. Com
paring the relations (5.19) through (5.20), with (5.29) to (5.31) we conclude 
that g = U(t)d+; the relation (5.32) therefore holds in this case as well. 
Finally since U U(t)ty+ is dense in 9CC', it follows by continuity that (5.32) 
holds for all ƒ in 3C;. 

Using Lemma 5.6, we see that formula (5.32) can be used to project any ƒ 
in %'E into %'c. 

We conclude this section by defining the scattering operator S" as the 
mapping of the ^Dl-representation onto the ^-representation: 

S':T_f-»T+f for ƒ in 9CC'. (5.33) 

6. The spectral representation. A representation in which the action of U(t) 
is multiplication by exp (iot) is called a spectral representation. It is clear that 
the Fourier transform of a translation representation satisfies this criterion. In 
this section we shall study the spectral representation of U, restricted to 9CC\ 

(5.29) 

(5.30) 
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so obtained from the <$+ and ^Dl translation representation treated in §5: 

(«>± ƒ )(o) - — ^ ƒ °° e t o ( r + ƒ )(*) A. (6.1) 

We now prove 

THEOREM 6.1. The $)+-spectral representation can be expressed as 

9* /(a) ±=rEF{f, T^o)), (6.2) 
V2TT 

where e±(z)> z = a + IT, are analytic continuations of the Eisenstein series 
generated by 

H±{w, z) - - = I - {//2±*, -izy1/2±* }. (6.3) 
V2 iz 

REMARK. It should be noted that h+ and h_ are closely related to but 
somewhat different than h in (4.1). In particular 

h_(z) - -h(-z)/V2 iz; 

since the Eisenstein series e corresponding to h converges for Im z < -1/2 , 
the Eisenstein series e_(z) converges for Imz > 1/2, and the zero Fourier 
coefficient of e _ is related to that of e by 

e(?)(z) _ - i L - e(0>(-z). (6.4). 
V2 iz 

An explicit formula for e(0) is given in (4.7). On the other hand A+(z) is 
essentially the same as ( V2 iz)~lh(z) except that its second component has the 
opposite sign. This sign change has no effect on the convergence of the 
corresponding Eisenstein series e+(z) nor on its analytic extension. The 
analogue of (4.7) is now 

V2 iz ef(z) - {yl/2+iz, -izyx'2+iz} + s(z){y^2~iz
9 -izyl/2~iz}. 

(6.4)+ 

PROOF. We shall treat only the ^-representation. Since 5+ is the com
posite of the two unitary maps T+ and the Fourier transform, it is itself 
unitary. Thus ?T+ is continuous; so it suffices to prove (6.2) for a dense subset 
of 3CC' ; for our purpose this will be the set of data ƒ for which T+ ƒ is smooth 
with compact support, and for which 

ƒ r + ƒ ( * ) * - o . 

We shall derive bounds for such ƒ by inverting T+; see the end of §5. Set 

V O 0 - - 7 T flosyT+f(s)ds 

V2 -̂oo 
and 

go(y) = {yl/My),-y3/2<P'(y)}> 
Then g0(y) has compact support in y; as a consequence only a finite number 
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of images y~lF of F lie in that portion of the support of gQ which is contained 
in the strip 

5 = {-1/2 <x< 1/2,y > 0 } . 

Thus the sum 

* ( " ) - 2 *OCY"0 (6.5) 
Tocxr 

has only a finite number of nonvanishing terms on F and is of compact 
support in F. g is automorphic and, as shown at the end of §5, 

/ - f i ' S , (6-6) 
and by (5.26) 

T+f=T+g. (6.6)' 

By definition (5.5) of Q', 

/ - « e l (6.7) 
N.b. It is easy to show that/— g actually belongs to '$_, but the weaker 
result (6.7) suffices, here. 

Substituting (6.6) into (6.1) we get 

% ƒ - —^z- f °° e t o ( r + g)(j) A. (6.8) 

Recalling formula (5.10)+ defining T+ and making the change of variable: 
s -> log^, the relation (6.8) becomes 

••'-sH^H^)-^)* 
(6.8)' 

The remainder of the proof of Theorem 6.1 splits into three parts: 
Step 1. Continue (6.8)' analytically into the half plane Imz < -1 /2 and 

then rewrite it as 
1 

% f--=rEs(g9 *+(z)); (6.9) 
V27T 

here Es denotes the invariant form of the energy integral given in (2.2)' but 
integrated over the strip S instead of F. 

Step 2. Replace the integral over the strip by a sum of integrals over all the 
y~lF*s contained in S. Using the fact that g is automorphic this gives 

vlîr Tooxr 

1 
2 EF(g9 A+(yw,z)) 

~-ï=rEFlg9 S h+(yw,z)) = EF(g9 IJz)). (6.10) 

Note that the sum defining the Eisenstein series converges for Im z < -1 /2 
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and that e+(z) can be continued analytically back to real z. 
Step 3. Show for the eigenfunctions {f^} that 

£,(.£*, M*))-o. (6.11) 

Since the ff1 span 9* and since by (6.7) ƒ — g G 9, the relation (6.2) is an 
immediate consequence of (6.10) and (6.11). 

PROOF OF STEP 1. Since 7%. g(s) has compact support, it is clear that ?T+ ƒ 
as defined by (6.8), and hence (6.8)', is entire in a and can be continued 
analytically into the half-plane Imz < -1/2 , z = a + IT. Notice that the 
support for the individual terms in (6.8)' are bounded away from y = oo but 
not from y = 0. It follow» that each of these terms is integrable for large >>; 
for small y the factor yiz decays fast enough if Im z < -1 /2 , and we now 
make use of this fact to show that (6.8)' exists as a double integral. 

As noted before, all but a finite number of the terms in (6.5) vanish on F. 
Thus g(w) is bounded on F and since g is automorphic it is also bounded on 
S. It follows that for Im z < -1 /2 the second term on the right in (6.8)' is 
integrable near y = 0. The first term can be written as 

K ( T T ) - ^ . -
g\ 

2Yy 

the same reasoning as above shows that the contribution of the second term 
on the right in this expression to (6.8)' is also integrable for small y. Thus it 
only remains to consider the integrability of 

Recall that by (6.5) 
yi2-l/\gv 

g - 2 SO(YH 
r^vr 

(6.12) 

where g0 is a smooth function of y alone with compact support, say in the 
interval (m, M). Hence 

go(yw) = £O(Ü) 
where 

aw + b , y 
u + w = yw = ;—; and v = 

Now 

cw + d 

9go(Yw) dgo(v) 3t> A — -T— ana 
dy 

It follows that 

dv dy 

dgo(yw) 

dv 
dy 

\cw + d\2 

1 

\cw + d\2 y 

dy 
M 

< const — for all v. 
y 

Since the number of terms in (6.5) which do not vanish on any transform yF 
of F is finite and independent of y, we conclude that 
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9ft 
dy 

< const —. 
y 

This estimate is sufficient to assure the integrability of (6.12) over the strip 5 
whenlmz < -1 /2 . 

We may now proceed formally to bring (6.8)' into the desired invariant 
form. We write 

ƒƒ y%{-^=-) dx<ty = ƒ/ {yiz~l/\sx-\yiz-y\] dx dy-, (6.13) 

splitting the first term, this can be rewritten as 

- ƒ / { ^ r 1 y*-l/29*i - j - y*-l/\8i - \ y*-^} dx dy-, 

and integrating the middle term by parts gives 

The integrated term vanishes; substituting the remaining term back into 
(6.13) we get 

v '°9'(vH * • - s v (*• • ̂ ,/2 - * i F } * •• 
Note that this integration by parts is the reverse of the one that brought (2.2)' 
into the form (2.2)". The right member of the above equation is in invariant 
form as can be seen from (1.5) and (1.6). Substituting this back in (6.8)' and 
making use of the definition of h + as given in (6.3) we obtain (6.9). 

PROOF OF STEP 2. In order to justify the interchange in the order of 
summation and integration occurring in (6.10), it suffices to recall the fact, 
noted in §4, that the Eisenstein series converges in %G when Im z < -1 /2 , 
except for the first term h+(w). However h+(w) is locally in %G and since g is 
of compact support in F, even this term causes no difficulty. 

According to Theorem 4.2, the Eisenstein function e+(z) is meromorphic in 
the local %G topology. Hence if we again make use of the fact that g has 
compact support in F, we see that EF(g, e+(z)) is meromorphic and can be 
continued analytically back to the real axis. It follows that 

3+ fia) - -^EF(g, 7^)). (6.9)' 

PROOF OF STEP 3. This proof is based on the observation that bothj^ and 
e+(a) are eigenf unctions of the generator A and that the standard proof for 
the orthogonality of eigenfunctions of a skew-Hermitian partial differential 
operator can be applied in this case even though one of the eigenfunctions is 
a generalized one. As defined in (5.1) 

ff - {qp ±\jqj), 

where ^ is an eigenf unction of L:Lqj = \fqp belonging to L2(F). The zero 



282 P. D. LAX AND R. S. PHILLIPS 

Fourier coefficient of ^ satisfies the ordinary differential equation 

dy2 J 4•* ^ * 

and hence is of the form 

qf) . <yi/2+\ + ^ ! / 2 " ^ for^ > a. 

Since ^ is square integrable on F, the coefficient c must be zero. On the other 
hand e+(o) is in %G except for its zero Fourier coefficient which by (4.7) is of 
the form 

1 [{yl/2+ia-iayl/2+ia} + s(o){yl^-io, -hy1'2-*}]. 
V2 iz 

It follows that the EF inner product of ff and e+(o) is integrable and that 
integration by parts is permissible. This gives 

ioEF(ff9 e+(o)) = EF{ff9 Ae+(o)) 

- -EF(Af*9 7^)) - +^EF(fj*9 7^5J)(6.14) 
from which (6.11) follows. This completes the proof of Theorem 6.1. 

In analogy with Lemma 5.6 we have 

LEMMA 6.2. Let ƒ be an arbitrary automorphic data in %'E and denote by j'c 

the projection of f into 3CC'. Then 

EF(f, e+(o) ) - EF(fe9 e+(o) ) . (6.15) 

Since ƒ differs from^' by a sum of genuine eigenvectors of A9 this follows 
by essentially the same argument as that used in (6.14). 

REMARK 6.3. It is easy to see that A has only a discrete set of purely 
imaginary point eigenvalues. In fact since the zero Fourier coefficient of an 
associated eigenfunction is of the form 

c { / / 2 + * /ay1/2**} + d{yl'2-*9iqy1'2-*} 

and since a point eigenfunction is by definition of finite G-norm, both c and d 
must be zero. It then follows by (2.17) that any such eigenfunction belongs to 
the subspace %; the assertion is therefore an immediate consequence of 
Corollary 2.2. 

We conclude this section by obtaining the spectral représenter for the 
scattering operator S' defined in (5.33). To this end we prove 

LEMMA 6.4. 

e+(o) « -s(o)e_(o). (6.16) 

PROOF. It is readily verified that h± satisfy locally 

Ah± = -izh±. 

It follows, along the lines indicated at the beginning of §4, that e± also satisfy 
locally 

Ae+ = -ize+. 
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It follows from (6.4) + that 

V2 ize^(z) - {yl/2+iz, -izyl^2+i2} + s(z){yl^u
9 -izy^2~iz} 

while according to (6.4) _ and (4.7) 

-V2 ize^(z) = {y1'2-'2, -izyl^iz} + s(-z){yl/2+iz, -izyx/2+iz). 

Therefore 

ƒ = e+(z) + s(z)e_(z) 

satisfies 

/(0>(z) = const {yl'2+*9 -izyx'2+iz}. 

Thus for Im z > 0,/(0)(z) belongs to 3CG. According to Lemma 4.1, e±(z) — 
e(P(z), belong to 9CG except when z lies in -io(J8); it follows that for all such z 
with Im z > 0,/(z) belongs to %G. Since ƒ is a linear combination of e+ and 
e_, it satisfies 

Now A has only a finite set of nonimaginary eigenvalues. These are the values 
{ ±\j] appearing in (5.1)' which correspond to the positive eigenpairs of L. In 
fact, as explained in §5, in the quotient space %E = %o/f9 where % is the 
null space of A, E is positive definite and equivalent to G. Since A restricted 
to %E is skew-Hermitian, it has no nonimaginary eigenvalues on %E. Thus 
for Im z > 0 and z not in {/^}, it follows from the above that/(z) = 0. By 
analytic continuation this holds for real z as well, as asserted in Lemma 6.4. 

THEOREM 6.5. The spectral représenter of the scattering operator: 

S':er_ ƒ->$+ ƒ 
is the multiplicative operator: 

S'(o) = -s(o). 

PROOF. It follows from Theorem 6.1 and Lemma 6.4 that 

9+ ƒ - Mf> *7W) - s(°)Mf> M°)) - Mo)^ ƒ, 
as desired. 

In the case of the modular group, the scattering operator S ' can be 
expressed in terms of the Riemann f-function and the gamma function as in 
(4.7)'. The poles of S ' are the nontrivial zeroes of £(1 + 2iz). Thus if the 
Riemann hypothesis is true these poles will lie on the line Imz = 1/4. A 
further connection between our theory and the f-function can be expressed in 
terms of the semigroup of operators Z" defined in analogy with Z of §3 using 
<3)£ = *D± n %É instead of <$>±. Pavlov and Faddeev [2] have formulated 
the Riemann hypothesis in terms of properties of Z": The Riemann hypothe
sis is true if and only if Z"(0 decays exponentially. Specifically, in [6] we 
have shown: The Riemann hypothesis is true if 

lim sup rllog\\Z"(t)f\\E < -1 /4 (6.19) 

for a set of ƒ dense in 3CC'. The relation (6.19) is an assertion about the rate at 
which energy is propagated to infinity for those solutions of the automorphic 

(6.17) 

(6.18) 
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wave equation which contain no standing waves, i.e. are orthogonal to point 
eigenvectors. This latter condition prevents the application of hyperbolic 
techniques for proving local energy decay via nonstandard energy identities. 

Another possible approach is to use in (6.19) vectors ƒ obtained by 
application of Z"(0 to tyl; this is discussed in an appendix to §7 in [6\ 
entitled "How not to prove the Riemann hypothesis". 

Hilbert is reputed to have envisaged a proof of the Riemann hypothesis by 
constructing a skew-hermitian operator on a Hilbert space whose eigenvalues 
are of the form K — 1/2, K being the nontrivial zeroes of f. By an analogue of 
Corollary 4.3 the infinitesimal generator B" of Z" has as its spectrum the 
values {(/c - l)/2}. It follows that 

2B" + 1/2 (6.20) 
is the kind of operator on 3CC' that was envisaged by Hilbert; all that is 
missing is an appropriate inner product on DCC' which makes (6.20) skew-
hermitian. 

7. The point spectrum. In addition to the continuous spectrum analysed in 
§§4, 5 and 6, the operator A has a substantial point spectrum. As noted in 
Remark 6.3, the point spectrum is discrete. In the case of the modular group, 
analysis of the point spectrum is made particularly easy by exploiting the 
bilateral symmetry of the fundamental domain F described in (1.10), that is 
the mapping x -» -x which takes F into itself. Since the operator L is 
invariant under the reflection: x -» -x, the domain of L can be reduced to 
the direct sum of even and odd functions. The boundary conditions induced 
by a function being automorphic become Dirichlet boundary conditions on 
half of F for odd functions and Neumann boundary conditions on half of F 
for even functions. It is not hard to show that under Dirichlet boundary 
conditions on half of F, the proper eigenfunctions form a complete orthonor
mal system. Thus the point eigenvalues corresponding to odd eigenfunctions 
of L over F accumulate at infinity. It can also be shown that the number of 
proper eigenvalues corresponding to even eigenfunctions over F is also 
infinite. The asymptotic distribution of the proper eigenvalues of L can be 
related to the asymptotic behavior of the scattering operator, see Theorem 
8.6, p. 205 of [6]. 

Finally we note that if -v2 is an eigenvalue of L with eigenfunction/?: 

Lp - -v% (7.1) 

then 

g± = {/>, ±ivp) 

are eigenvectors of A with eigenvalues ± iv: 

Ag± = ±ivg±. (7.2) 

8. The Selberg trace formula. The hyperbolic theory developed here lends 
itself to two distinct versions of the formula which Selberg derived using the 
concept of trace for operators of trace class. On the one hand the trace of 
such an operator is equal to the sum of its eigenvalues; on the other hand 
when the operator is an integral operator on L2 with a smooth kernel, it is 
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equal to the integral of the kernel along the diagonal. For Hermitian trace 
class operators this is standard; the general theorem is due to Lidskii (see [3]). 
In our first version of the trace formula we need only the Hermitian case, but 
in our second version we require the general theorem. 

We now give a simple illustration of how the trace formula is used. Let q>(t) 
be a real valued smooth even function which decays reasonably fast as 
|f| -» oo. Given a positive real number p, let H be the space of /^-periodic 
functions endowed with the L2(0,p) topology. Finally define K = K^ as the 
convolution operator: 

(vx*) - r *(*>/(* - o * - » • / (8.i) 
Clearly K^ maps L2(0, p) into itself and is Hermitian. When written as 

V W - S [(n+l)P <p(x - t)f(t) dt=[P2i<p(x-t + np)f(t) dU 

we see that its kernel: 

2 <p(x - t + np) 

is smooth; therefore K^ is of trace class and its trace is equal to 

/>2 v(np)-
The eigenfunctions of K9 are exp (2mmt/p), m E Z; the eigenvalues are 

\» - ƒ q>(t)expl-ymt\dt = <p(-yM> 

where <p denotes the Fourier transform of <p. The trace formula asserts that 

*2 vinp) = 2 * ( ^ r ) ; (8-2) 

this is the Poisson summation formula. 
Returning to the problem at hand, let U(i) be the solution operator for the 

automorphic wave equation, defined as in §2, and let A denote the infinitesi
mal generator of the group U. As we saw earlier, the domain of A can be 
reduced to two ^-orthogonal subspaces, one spanned by the proper eigenvec
tors of A and the other spanned in some sense by the generalized eigenvectors 
corresponding to the continuous spectrum of A. We denote the restrictions of 
U to these subspaces by Up and Uc9 respectively; clearly 

U(t) - Up(t) + Uc(t). (8.3) 

Next we denote by %x the space of initial data of the form {0,/}. Note 
that E is positive definite on %l9 in fact 3C| = L2(F). Suppose that u(t) is a 
solution of the automorphic wave equation with initial data in 3C,, that is 
u(0) = 0. Then -u(-t) will have the same initial data as u{t\ which shows that 
u(t) is an odd function of t. It follows that U(t) + U(-t) maps %x into %x. 

Let <p be a real valued function which is even and decreases exponentially 
as \t\ -» oo. We define K = K^ by 

Kv=r Up(t)<p(t)dt (8.4) 
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restricted to %x. Clearly K^ maps %x into %x and is Hermitian. 
If -vj is a negative eigenvalue of L with eigenfunction/^, then {0,/?y} is an 

eigenvector of K^ with eigenvalue 

K.= C eVy^dt-^Vj); (8.5) 
• ' -oo 

as before <p denotes the Fourier transform of <p. As we noted earlier, L also 
has a finite number of positive eigenvalues \j, j = 1 , . . . , m (see (5.1) and 
(5.2)); these give rise to eigenvalues <p(i\j) of K^ Note that since <p(t) 
decreases exponentially, <p is defined for complex arguments. 

The estimates on the point eigenvalues of A referred to in §7 show that the 
number of Vj that do not exceed a is 0(a2). It follows from this that the sum 
2|K,|, where K, is given by (8.5), converges provided that <p(r) tends to zero 
sufficiently fast as |r| -> oo. To this end we further impose some mild 
assumptions on <p and a few of its derivatives. Then K^ is of trace class and 

tr Kv « 2 ?(",) + 2 tfO'\) + W(0); (8.6) 
here t) is the multiplicity of the zero eigenvalue of L. 

Next in order to evaluate the trace of K^ in another way, we express K^ as 
an integral operator. Using (8.3) and (8.4) we write 

* ; - ƒ [U(t)-Uc(t)]<p(t)dt. (8.7) 

We can express Uc in terms of the operational calculus as 

C/c(0 = exp,V, 

where Ac is the absolutely continuous part of A. Now in § 6 we have explicity 
determined the spectral representation of Ac. The generalized eigenfunctions 
of Ac are given by the extended Eisenstein series e(w, a). Since Ac acts as 
multiplication by ia in the spectral representation, any function $(-iAc) of 
-iAc is an integral operator with kernel 

ƒ $(o)e(w, a)e(w\ a) da. 

In particular 

ƒ Ue(t)<p(t) dt=f <p(0exp (f, Ac) dt = 9(-/^c) 

is an integral operator with kernel 

<p(a)e(w, a)e(w\ a) da, (8.8) 
/ 

Next we show how to write U(t) as an integral operator. Denote by U0(t) 
the solution operator for the non-Euclidean wave operator over all of II. 
Since L is invariant under the non-Euclidean motions, so is U0(t); in 
particular if f0 is automorphic in II, so is U0(t)f0. Thus if we denote the 
restriction of f0 to F by 

J ss XFJQ> 
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then 

Since 

where 

we conclude that 

u(t)f~XFu0(t)U 

r 

(Tyf){w)=f(yw), 

U(t)f = X F S W ' (8-9> 
r 

The non-Euclidean wave equation in II can be solved explicitly: For initial 
data 

u(w, 0) » 0, i*(w, 0) - f(w), 

we have 

t v sgn f ~ r ƒ(>*>') « / 

V8 7T */r<|/| Vcosh t - cosh r 
where r is the non-Euclidean distance from w to w' and dw' is the non-
Euclidean area element. Using this formula we can represent the restriction of 
U0 to %l as an integral operator with a distribution kernel R, called the 
Riemann function: 

R(w, w', t) « i p ^ - 9 * — . (8.10) 
V8 7T Vcosh < — cosh r 

Substituting this into (8.9) we see that the kernel of fU(t)<p(t) dt is 

1 fy(fognfafS * <ft. (8.11) 
v 8 7T r ^cosh t - cosh ry 

Following Selberg we separate the sum in this integral into four parts 
corresponding to the identity, the hyperbolic, the elliptic and the parabolic 
elements of T. Within each part we group the terms into conjugacy classes of 
T. Accordingly, (8.11) is broken into the sum of four kernels, three of which 
are of trace class. The trace of the part coming from the identity is 

a r e a ( F ) ç <p'(t) 

JaSfe* < M 2 ) « Ait J sinh t/2 

For the modular group area (F) = 7r/3. The trace of the part coming from 
the hyperbolic elements is the weighted sum 

? J o 2|sinh(fe//2)| » ( * ° ( 8 , 1 2 W 

where the first sum is over all inequivalent primitive hyperbohc elements T of 
T, and / = /(r) is defined by 

2 cosh / - tr T. (8.13) 
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The trace of the part coming from the elliptic elements is a sum of weighted 
integrals: 

T i -J smh z//2 + sm ^kir/rn 

where the first sum is over all inequivalent primitive elliptic elements r and 
m = m(T) is the order of T, i.e. the smallest m such that rm = ƒ. Alternatively 

2 cos 7r/m = tr T. 

The part corresponding to the parabolic elements is not of trace class, but 
its difference from <p(-iAc) is. Using (8.8) the trace of the difference can be 
expressed as a weighted integral of <p; for the modular group this difference is 
the sum of two terms: 

and 

| 0(0) - log 2<p(0) - ^ ƒ cp(a)-^ log r ( l + ia) da (8.12) 

\ * ( 0 ) + h / *(a)7 ^log s{o) do; (8*12)c 

here ^(a) is the scattering function appearing in formulas (4.7)' and (6.18). For 
arbitrary discrete subgroups (with noncompact fundamental domain of finite 
area) s(o) has to be replaced by the determinant of the so-called scattering 
matrix, and the three terms in (8.12)par have to be multiplied by the number 
of cusps, i.e. points at infinity, of the fundamental domain (which is the same 
as the number of inequivalent primitive parabolic elements in T). The trace 
formula says that 

(8.6) = (8.12)id + (8.12)hyp + (8.12)* + (8.12)par + (8.12)cont. 

For further details we refer to §9 of [6] and to Kubota [4]. 
It should be remarked that a similar trace formula has been derived by 

Selberg for discrete subgroups whose fundamental domain F is compact. The 
formula and its derivation are simpler in this case since there is no continuous 
spectrum and since T contains no parabolic elements; see [9] for an illuminat
ing exposition and a geometrical interpretation of the trace formula. 

We remark finally that when the procedure described above is applied to 
the trivial case of the classical wave equation for functions of x and t which 
are periodic in x, the operator (8.4) reduces to the operator (8.1) and, as 
remarked earlier, the trace formula becomes the Poisson summation formula. 

We turn now to a description, even sketchier than the foregoing, of our 
other approach to the Selberg trace formula; this is described more fully in an 
appendix to §9 of [6]. It is based on the notion of trace for non-Hermitian 
operators. 

Let Z(t) denote the semigroup of operators 

Z(t) = P+U(t)P_, (8.15) 

where, as in §3, P± are the orthogonal projections onto tf)± and U(t) is as 
before; we take as the domain of Z(t) all of the original Hilbert space %G. As 
so defined Z(t) does not converge strongly to the identity as t -» 0; however 
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the restriction to % = %G © (<3)+ © <3)_) does have this property. We take a 
function <p(t) of compact support in R+ and define C = C9 by 

o 
Z(t)<p(t) dt. (8.16) 

We claim that C^ is of trace class. For proof we refer to [6], where two 
demonstrations are given. In the second proof, contained in Appendix 2 to 
§9, it is shown that C^ is an integral operator whose kernel is smooth except 
for a jump dicontinuity along the line y — a (caused by the action of P±) and 
that the kernel decays faster than any power of y as y -» oo. The argument 
showing this decay is based, appropriately enough, on the Poisson summation 
formula. 

We now determine the eigenvectors of Cv. Aside from the null vectors of 
C9, which do not contribute to the trace, all of these are eigenvectors of Z(t) 
restricted to %. It is shown in the appendix to Chapter 9 of [6] that these 
eigenvectors are obtained, by P+ projection, from the eigenvectors of U(t) 
which are orthogonal to ^ Q . 

We treat first the proper eigenvectors of U(i). We saw in §7 that L has 
infinitely many eigenfunctions p corresponding to negative eigenvalues -p2: 

Lp = - i ^ p . 

Integrating this relation with respect to x, we get for the zero Fourier 
coefficient/?(0) the ordinary differential equation: 

all of whose solutions are of the form 

pM » ayV2-i> + byl/2+iv. 

Since -v1 is in the point spectrum,/? belongs to L2(F) and this requires both a 
and b to be zero, i.e./>(0) = 0. 

We saw in §7 that Up is an eigenf unction of L, then 

g± * {/?, ±ivp) 

are eigenvectors of U(t\ with eigenvalues exp(± *Vf). The condition /?(0) = 0 
implies that g± are orthogonal to both <ÎL and <3)+, i.e. that 

P_ g± = P+ g± = g±. 

It follows that g± are eigenvectors of Z{t) as well, with eigenvalues 
exp(± ivt); hence g± are also eigenvectors of C ,̂ with eigenvalues 

$(±,j). (8.17) 

We have noted in §5 that L has a finite number of positive eigenvales X2; 
denote the corresponding eigenf unction by q. Then {q, Xq) is an eigenvector 
of U(i), with eigenvalue exp(A*)- As remarked in (5.6), for X > 0, {q, Xq} is 
orthogonal to D̂_ ; from this one can deduce, using the relation (3.7), that 
^+{#> ^ } is a n eigenvector of Z(t) with eigenvalue exp(Af)> a n d therefore of 
Cv with eigenvalue 

<£(-%). (8.18) 



290 P. D. LAX AND R. S. PHILLIPS 

The vector {q9 -\q} is also an eigenvector of U(t), in this case orthogonal 
to tf)+, but not in general orthogonal to tf)_. However if it happens also to be 
orthogonal to <ÏL, then as above {q, -\q} is an eigenvector of Z{t) with 
eigenvalue exp(-A0> a n d of C9 with eigenvalue 

<£(%). (8.18)' 

We turn now to the generalized eigenvectors of U{t) which are orthogonal 
to <5D_. The corresponding eigenvalues appeared in the proof of Theorem 4.2 
as poles of the meromorphic continuation of the scattering function s(z) into 
the upper half plane. According to this theorem, these poles can occur only at 
points of -io(B); here B denotes the infinitesimal generator of Z(t) restricted 
to %. Taking the residue of the Eisenstein series about such a point, it is clear 
from (4.7) that the resulting generalized eigenvector of A will be orthogonal to 
fy_ and hence, after projection by P+, will be a proper eigenvector of B. The 
corresponding eigenvalue of B is a complex number [iJ9 Re ty < 0, that of 
Z(0 is exp(tyf) and that of Cy is 

Finally we denote by rj0 the multiplicity of 0 as an eigenvalue of B; then 
<p(0) is the corresponding eigenvalue of C^ and it has multiplicity TJ0. Thus the 
sum of the eigenvalues of Cy is obtained by adding (8.17) to (8.18), (8.18)', 
(8.19) and to the above. Altogether we get 

2 $(±»j) + 2 <P(-%) + 2 '«P(^) + 2 ${-%) + w(o). (8.20) 
Next we construct the kernel of C^ as integral operator. This task is roughly 

similar to constructing the kernel of K^ mildly complicated by the fact that 
(i) Çp acts on vectors with two components, and (ii) the underlying Hubert 
space is the direct sum of L2(F) and a Dirichlet space over F. When the dust 
settles, we end up with the following formula: 

(8.20) - <p(0)/2 + (8.12)* + (8.12)hyp + (8.12)ell + (8.12)par. 

It is instructive to compare this with our previous trace formula. We extend 
<p used in the definition of C9 in (8.16) as an even function of t and use this 
extended <p in the definition of K^ in (8.7). Subtracting the trace formula for 
Ky from that for C^ we obtain an identity of the following form 

S *(-ty) - 2 " <K<\) + too - 2ii)v(o) 

- i ƒ OW + ^- a ) ] £ los ^a> *• <8-21> 
Since the poles of s(z) in the upper half plane coincide with the set -//^ and 
the so-called relevant i^.'s, this formula can be verified by deforming the 
integral on the right from the real axis off to infinity. This can be justified on 
the basis of appropriate estimates for s(z) away from the poles; for the 
modular group such estimates are available. In order to verify (8.21) in 
general we use a "mini-trace formula" for the operator 

c;-fz"(t)q>(t)dt 
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on %", where 

and 

Z"0) = P'lU(t)P'i; 

here ^ denote that subspace of ^Ù± which is orthogonal to the subspace 9 
defined in (5.4) and P'l are orthogonal projections onto %'c © ^D^. As a 
by-product of this analysis we find that TJ0 = 2TJ. For details see the appendix 
to §9 of [6]. 

Appendix: A new proof of Theorem 2.1. Theorem 2.1 is a restatement of 
Theorem 6.6 in [6]. Since the initial steps of the two proofs are the same we 
shall refer the reader to [6, pp. 126-130] for the proofs of some of the initial 
lemmas. 

THEOREM 2.1. For every X in the resolvent set of A, (XI — A)~l maps the unit 
ball in % into a compact subset of %G. 

REMARK. Since it suffices to prove the theorem for a single value of A, we 
shall for convenience take X to be real > 4. 

Theorem 2.1 is a consequence of a simpler result: 

THEOREM A.l. Let <p be any C0°° function on R+. Define the operator 
M = My by 

Mp = f" <f(t)U{t) dt. (A.1) 

Then M^ maps the unit ball in % into a Compact subset of %G. 

The proof of this theorem is based on the following two propositions: 

LEMMA A.2. (a) The set 

u = Mf, G(f) < 1, (A.2) 

is precompact with respect to the norm 

GY(u) - ƒ ƒ {\uhx\
2 + K / + k|2 + N 2 } dx dy (A.3) 

F(Y) 

for any Y; here F( Y) denotes the domain 

F(Y)~ F n {y<Y}. 

(b) Given any e > 0, there is a Y > a such that 

+ ^)dxdy<eG(f) (A.4) 

for all u of the form (A.2) with f in %. 

Part (a) is a simple consequence of Rellich's compactness criterion. 
PROOF OF PART (b). We note that the imposition of a finite number of linear 

continuous constraints on the domain of M does not affect the precompact-
ness argument. Now fi°\a) = 0 is just such a constraint since by Lemma 4.2 

+ y 
V7 
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in [6] 
•1/2 

]fl°\a)\2 < f " \Mx9 a)\2 dx < const G(f ) . 
J-\/2 

Since for ƒ in 5C, /2
(0)O) = 0 for all y > a, it follows by (2.17) that we can 

assume without loss of generality that ƒ (0)(>>) = 0 for all.y > a. 
Fixing <p, we choose T so that supp <p c (0, T). Since the speed of propaga

tion for the solution to the non-Euclidean wave equation is < 1, a signal 
which originates at a point below y = 2beT (or above y = beT) will not get 
above y = 2be2T (or below y = b) during time t G (0, T). According to (A.l) 
and (A.2), u is a superposition of values of U(t)f, 0 < t < T. It follows that 
values of u at points where y > 2be2T (or y < b) do not depend on values of ƒ 
below y = 2beT (or above y = beT). This suggests that we split ƒ as 

so that 

and so that 

g = 0 forj> < beT
9 

A = 0 îory>2beT 

G(g) < constG(/). 

We can do this in such a way that the constant is independent of our choice 
of b > a, which will be fixed later on. 

Since part (b) of the proof is concerned only with values of u for large y, h 
plays no role in what follows. We therefore need only consider g and to keep 
our notation simple we shall hereafter denote g by ƒ. We may therefore 
assume that/satisfies 

/ = 0 forall>> < £ e r . (A.5) 

In this case w = 0 f or all y <b. Moreover the various Fourier coefficients of 
u, that is the 

u<<kXy) = f e~ikxu(x,y)dx 
•J-1/2 

(A.6) 

are obtained directly from M acting only on the corresponding Fourier 
coefficients off; that is, the Fourier coefficients of U(t)f remain uncoupled as 
long as the signal stays above y = a as it does for 0 < t < T. In particular 
a(0> - 0. 

We note that G and E are identical for data vanishing for y < a. Since 
ft® = 0 for ally, we have 

G(/)"X ƒ' iv.r+' 1/2 

ƒ, 

V7 

= 2 ƒ °° W)2|/[*f + y (A.7) 
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We now set 

p~(\I- A)u~ ƒ (\<p + dt<p)U(t)fdt. (A.8) 

Clearly 

G(p) < const G(f ). (A.9) 

Further writing (A.8) in component form, we get 

Xux — 142= P\> ^u2 "~ Lux = p2, (A.8)' 

so that 

X\ - y2Aut - uJA =*Xpi+P2=<I. (A.8)" 

Applying (A.7) topx we get 

2 / " U W *<<?(/») (A.10) 
«00 

A:̂ =0 Jb 

and combining this with (A.9) we see that 

2 I -^T1- 4» < const G(/>) < const G(f). (AM) 
k¥=o Jb yz 

Finally it is clear from (A.8)" that the fcth Fourier coefficient of ux satisfies 
the equation 

«8r V j> / y 
where K = À2 - 1/4. 

LEMMA A.3. Let v G C *(R) ara/ /£° |t>|2 $> < oo, then there exists a sequence 
yj ~* oo for which Re v'v\y -> 0. 

PROOF. Obviously 

lim P " f l H 2 ^ = 0. 

By the law of the mean there is yj in (j,j + 1) for which x*(yf) -»0. 
Moreover 

K^;+2)|
2 - l« W - P;+2 4; l«f dy = 2 P;+2 Re (v'v) dy. 

Jy> Oy Jy'. 

Since this expression converges to zero and since yj+2 — yj > h the law of the 
mean again furnishes us with a ^ in (yj, yj+2) satisfying the statement of the 
lemma. 

We return now to the proof of part (b) of Lemma A.2. Multiply the relation 
(A.12) by u\k) and integrate by parts. Take the real part of the resulting 
relation and use Lemma A.3 at the upper limit of integration and the fact 
u\k\b) = 0 at the lower limit. This gives us 

f" ( l « n 2 + [*<W + 4)l«î*)l2} dy - 2 Re j T ^ "̂ > dy. 
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Applying the Schwarz inequality to the right member gives us 

f °° {|iij*>'|2 + 4*2k2\u\k)\2} dy < A r - ^ 
J h K J h2 J h 'b * ' b* Jb y 

and transposing the last term on the right we get 

dy+ r\u\kfdy; 

[X {|MW'I2 + 2 * 2 W | 2 } dy < - 1 f °° J ^ # . (A.13) 

From the first relation in (A.8)' we get 

y 

00 (*)|2 I P H 

<? • ' h •'A 

6 >> ' 

00 

6 

dy 

It now follows from 

ƒ v* 
(*> 

V7 J
r»00 I t / f ^ ^ P /«OO 

< 2 r °° o«H 2 +i«n 2 ) * 

(A.14) 

/

•oo 

b 

together with (A.7) as applied to ui9 (A.10), (A.11), (A.13) and (A.14) that 

G(«) < « ^ G(f), 

where the constant is independent of our choice of b. Hence if we choose b so 
that const/b2 < e and Y > 2be2T

9 then we get the desired inequality for part 
(b) of Theorem A.l. 
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