ON SIMPLICITY OF CERTAIN INFINITE DIMENSIONAL LIE ALGEBRAS

BY V. G. KAC ${ }^{1}$

1. The main statements. Let $A=\left(a_{i j}\right)$ be a complex $(n \times n)$-matrix. Denote by $\widetilde{\mathscr{S}}(A)$ a complex Lie algebra with $3 n$ generators $e_{i}, f_{i}, h_{i}, i \in I=\{1$, $\ldots, n\}$, and the following defining relations $(i, j \in I)$:

$$
\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}, \quad\left[h_{i}, h_{j}\right]=0, \quad\left[h_{i}, e_{j}\right]=a_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}
$$

Set $\widetilde{C}=\left\{c_{1} h_{1}+\cdots+c_{n} h_{n} \mid a_{1 j} c_{1}+\cdots+a_{n j} c_{n}=0, j \in I\right\}$; clearly, \widetilde{C} lies in the center of $\widetilde{\mathscr{S}}(A)$. Set $\Gamma=\mathbf{Z}^{n}, \Gamma_{+}=\left\{\left(k_{1}, \ldots, k_{n}\right) \in \Gamma \mid k_{i} \geqslant 0\right\} \backslash\{0\}$. Let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the standard basis of Γ. For $\eta=\left(k_{1}, \ldots, k_{n}\right)$ set $T_{\eta}=\Sigma_{i, j} a_{i j} k_{i} k_{j}-\Sigma_{i} a_{i i} k_{i}$.

Theorem 1. Provided that $a_{i j}=a_{j i}, i, j \in I$, and $T_{\eta} \neq 0$ for any $\eta \in$ $\Gamma_{+} \backslash \Pi$, the Lie algebra $\widetilde{\leftrightarrow}(A) / \widetilde{C}$ is simple,

Corollary 1. Provided that A is a real symmetric matrix with positive entries, the Lie algebra $\widetilde{\mathscr{S}}(A) / \widetilde{C}$ is simple.

Corollary 2. The Lie algebra K_{2} with the generators $e_{1}, e_{2}, f_{1}, f_{2}, h$ and the defining relations $\left[e_{i}, f_{j}\right]=\delta_{i j} h,\left[h, e_{i}\right]=e_{i},\left[h, f_{i}\right]=-f_{i}$ is simple.

Proof.

$$
K_{2}=\widetilde{\mathscr{S}}\left(\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right) \widetilde{C} .
$$

Corollary 2 has been conjectured in [1]. Further one can find a motivation for this problem. Setting $\operatorname{deg} e_{i}=-\operatorname{deg} f_{i}=\alpha_{i}, \operatorname{deg} h_{i}=0, i \in I$, defines a Γ-gradation $\widetilde{\mathscr{H}}(A)=\bigoplus_{\alpha \in \Gamma} \widetilde{\mathscr{S}}_{\alpha}$. Let \mathfrak{F} be the sum of all graded ideals in $\widetilde{\mathscr{S}}(A)$ intersecting $\widetilde{\mathscr{S}}_{0}$ trivially. We set $\left(\mathscr{H}(A)=\widetilde{\mathscr{S}}(A) / \mathfrak{J}\right.$; let $\mathscr{H}(A)=\bigoplus_{\alpha \in \Gamma} \mathscr{H}_{\alpha}$ be the induced gradation. Note that if D is a nondegenerate diagonal matrix, then $\mathscr{H}(D A) \simeq \mathscr{H}(A)$; the matrices A and $D A$ are called equivalent. Let C be the image of \widetilde{C} in $\mathscr{H}(A)$; then C is the center of $\mathscr{H}(A)$ [1]. The Lie algebra $(\mathscr{H}(A) / C$ has no graded ideals if and only if [2]
(m) for any $i, j \in I$ there exists $i_{1}, \ldots, i_{r} \in I$ such that $a_{i i_{1}} a_{i_{1} i_{2}} \cdots a_{i_{r} j} \neq 0$.

If A is the Cartan matrix of a simple finite dimensional Lie algebra $(\mathbb{H}$,
then $(\mathscr{H} \simeq \mathscr{H}(A)$. In general, the Lie algebras $\mathscr{(S}(A)$ are infinite dimensional. A number of applications of these algebras in various fields of mathematics have been found in the last decade. The Lie algebra K_{2} plays the role of a "test" algebra in [1]. Due to the fact that K_{2} is simple, we immediately obtain a stronger form of Theorem 1 from [1].

Theorem 2. Suppose that matrix A satisfies the condition (m). Then there are only the following three possibilities:
(i) A is equivalent to the Cartan matrix of a simple finite dimensional Lie algebra (s) (and $(\mathcal{H}(A) \cong(\mathbb{H})$;
(ii) A is equivalent to one of the matrices from Tables 1-3 [1], and the Gelfand-Kirillov dimension of $(\mathscr{H}(A)$ is 1 (the construction of $\mathscr{S}(A) / C$ is given by Lemma 22 [1]);
(iii) $(\mathscr{H}(A)$ contains a free subalgebra of rank 2 and the Lie algebra $\mathscr{(H}(A) / C$ is simple.

Suppose that the matrix A is symmetric. Then there exists an invariant symmetric bilinear form (,) on $\widetilde{\mathscr{S}}(A)$ which is uniquely defined by the properties (a) $\left(h_{i}, h_{j}\right)=a_{i j}$ and $\left(e_{i}, f_{j}\right)=\delta_{i j}, i, j \in I$, (b) $\left(\widetilde{\mathscr{H}}_{\alpha}, \widetilde{\mathscr{H}}_{\beta}\right)=0$ for $\alpha \neq-\beta$, (c) $\operatorname{Ker}()=,\mathfrak{J}+\widetilde{C}[1]$. Let σ be an involutive antiautomorphism of $\widetilde{\mathscr{H}}(A)$ defined by $\sigma\left(e_{i}\right)=f_{i}, \sigma\left(f_{i}\right)=e_{i}, \sigma\left(h_{i}\right)=h_{i}$. On each $\widetilde{\mathscr{E}}_{\alpha}, \alpha \in \Gamma_{+}$, we introduce a bilinear form by $B_{\alpha}(x, y)=(x, \sigma(y)), x, y \in \widetilde{\mathscr{E}}_{\alpha}$. Since $\bigoplus_{\alpha \in \Gamma_{+}} \mathscr{H}_{\alpha}$ is freely generated by e_{1}, \ldots, e_{n}, we can fix a basis in each $\widetilde{\mathscr{S}}_{\alpha}$ which does not depend on A. Let $\varphi_{\alpha}=\varphi_{\alpha}(A)$ be the determinant of the matrix of B_{α} in this basis. This is a function on the space of symmetric $(n \times n)$-matrices. It follows from Theorem 1 that provided that $T_{\eta} \neq 0$ for any $\eta \in \Gamma_{+} \backslash \Pi$, the Lie algebra $\widetilde{\mathscr{S}}(A) / \widetilde{C}$ is simple. Hence, φ_{α} is different from 0 outside the hyperplanes $T_{\eta}=$ $0, \eta \in \Gamma_{+} \backslash \Pi$, and we obtain

Theorem 3. Up to a nonzero constant factor (depending on the basis) one has:

$$
\varphi_{\alpha}(A)=\prod_{\eta \in \Gamma_{+} \backslash \Pi} T_{\eta}^{c_{\eta, \alpha}}
$$

where $c_{\eta, \alpha}$ are nonnegative integers.
REMARK. An interesting open question is to compute the exponents $c_{\eta, \alpha}$. It follows from the proof of Theorem 1 that $c_{\eta, \alpha}=0$ if $\alpha=k \alpha_{i}$ or $\alpha-\eta \notin \Gamma_{+}$ $\cup\{0\}$. It is also clear that $\operatorname{deg} \varphi_{\alpha}=($ height $\alpha-1) \operatorname{dim} \widetilde{\mathbb{S}}_{\alpha}$.
2. Proof of Theorem 1. Set $n_{ \pm}=\bigoplus_{\alpha \in \Gamma_{+}} \mathscr{H}_{ \pm \alpha}$ and $\mathfrak{g}=\mathscr{H}_{0}$; then $\mathscr{H}(A)$ $=\mathfrak{n}_{-} \otimes \mathfrak{S} \oplus \mathfrak{n}_{+}$. Since $(\mathscr{S}(A) / C$ is simple ($[1$, Lemma 6]) the theorem will follow from the fact that \mathfrak{n}_{-}is a free Lie algebra with free generators f_{1}, \ldots, f_{n}. To prove this, we employ the highest weight representations $M(\lambda), \lambda \in \mathfrak{S}^{*}$, of
$\mathscr{S}(A)$ [3]. We recall that $M(\lambda)=U(\mathscr{H}(A)) \otimes_{U\left(\mathscr{(} \oplus n_{+}\right)} \mathbf{C}_{\lambda}$, where \mathbf{C}_{λ} is a 1 -dimensional representation defined by $\mathfrak{n}_{+}(1)=0, h(1)=\lambda(h), h \in \mathfrak{W}$. The gradation of $\left(\mathscr{H}(A)\right.$ induces a gradation: $M(\lambda)=\bigoplus_{\eta \in \Gamma_{+} \cup\{0\}^{M(\lambda)_{-\eta}} \text {. We set }}$ ch $M(\lambda)=e^{\lambda} \Sigma_{\eta}\left(\operatorname{dim} M(\lambda)_{-\eta}\right) e^{-\eta}$. Clearly one has

$$
\operatorname{ch} M(\lambda)=e^{\lambda} \prod_{\alpha \in \Gamma_{+}}\left(1-e^{-\alpha}\right)^{-\operatorname{dim} \Theta_{-\alpha}} .
$$

From now on we will assume that A is symmetric. We recall the definition of the Casimir operator Ω on the space $M(\lambda)$ (in a slightly modified form, cf. [3]). The form (,) on $\widetilde{(}(A)$ induces a bilinear form on $\mathscr{(}(A)$ which we also denote by (,). Note that (,) is nondegenerate on $\uplus_{\alpha} \oplus \oiint_{-\alpha}, \alpha \in \Gamma_{+}$. We define a bilinear form on Γ by setting $\left(\alpha_{i}, \alpha_{j}\right)=a_{i j}$; we set $h_{\eta}=\Sigma k_{i} h_{i}$ for $\eta=$ $\Sigma k_{i} \alpha_{i}$. We choose in each $\uplus_{\alpha}, \alpha \in \Gamma_{+}$, a basis $e_{\alpha}^{(i)}, i=1, \ldots, \operatorname{dim} \bigoplus_{\alpha}$, and in $\mathscr{\xi}_{-\alpha}$ a dual basis $e_{-\alpha}^{(i)}$. We define $\rho \in \mathfrak{T} *$ by $\rho\left(h_{i}\right)=1 / 2 a_{i i}, i \in I$. Finally, we define Ω as follows:

$$
\Omega(v)=\left((\eta, \eta)-2(\lambda+\rho)\left(h_{\eta}\right)\right) v+2 \sum_{\alpha \in \Gamma_{+}} \sum_{i} e_{-\alpha}^{(i)} e_{\alpha}^{(i)}(v), v \in M(\lambda)_{-\eta} .
$$

A direct verification (cf. [4, Proposition 2.7]) shows that $\Omega=0$. This and the fact that $M(\lambda)$ is irreducible if any vector killed by all $\aleph_{\alpha}, \alpha \in \Gamma_{+}$, lies in $M(\lambda)_{0}$, gives the following lemma (see [5] for a more precise statement).

Lemma 1. If $(\eta, \eta)-2(\lambda+\rho)\left(h_{\eta}\right) \neq 0$ for any $\eta \in \Gamma_{+}$, then the $(\Im(A)$ module $M(\lambda)$ is irreducible.

Now we are able to complete the proof of Theorem 1. Consider the $(\mathscr{C}(A)$ module $M=M(0)$. The module M contains submodules $L_{i}=U(\circlearrowleft(A))\left(M(0)_{-\alpha_{i}}\right)$; set $L=\Sigma_{i} L_{i}$. Clearly, $\operatorname{dim} M / L=1$ and the $\left(\mathscr{S}(A)\right.$-module L_{i} is isomorphic to $M\left(-\alpha_{i}\right)$. Moreover, since $(\eta, \eta)-2\left(\rho-\alpha_{i}\right)\left(h_{\eta}\right)=T_{\eta+\alpha_{i}}$, by Lemma $1, M\left(-\alpha_{i}\right)$ is irreducible and therefore L is a direct sum of L_{i} 's. Hence, we have ch $M / L=1$ $=\operatorname{ch} M(0)-\Sigma_{i} \mathrm{ch} M\left(-\alpha_{i}\right)$. This gives the following formula:

$$
\begin{equation*}
\prod_{\alpha \in \Gamma_{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dim} \Theta-\alpha}=1-\sum_{i=1}^{n} e^{-\alpha_{i}} . \tag{1}
\end{equation*}
$$

But (1) is equivalent to the fact that n_{-}is freely generated by $f_{i}, i \in I$ (indeed, the inverse of the left-hand side of (1) is the generating function of $U\left(n_{-}\right)$; but \mathfrak{n}_{-}is free $\leftrightarrow U\left(\mathfrak{n}_{-}\right)$is free [6] \leftrightarrow the generating function of $U\left(\mathfrak{n}_{-}\right)$is the inverse of the right-hand side of (1)).

Proof of Theorem 2. It follows from §II 6 of [1] (see also [2, Lemma 3.11]) that each time when A is not one of the matrices of (i) or (ii), the Lie algebra $\left(\mathscr{S}(A)\right.$ contains K_{2} and therefore (by Theorem 1) contains a free subalgebra of rank 2 .

Remark. The problem about the defining relations for arbitrary $(\mathscr{H}(A)$ is still open; the first unclear case is $A=\left(\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right)$ (see the conjecture in [1, §II 7]). I think that this problem can be solved by a detailed study of the functions φ_{α}.

BIBLIOGRAPHY

1. V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSRIzv. 2 (1968), 1271-1311.
2. B. Ju. Weisfeiler and V. G. Kac, Exponentials in Lie algebras of characteristic p, Math. USSR-Izv. 5 (1971), 777-803.
3. V. G. Kac, Infinite-dimensional Lie algebras and Dedekind's η-function, Functional Anal. Appl. 8 (1974), 68-70.
4. \longrightarrow Infinite-dimensional Lie algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Advances in Math. 30 (1978), 85-136.
5. V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Advances in Math. 34 (1979), 97-108.
6. N. Jacobson, Lie algebras, Interscience, New York, 1962.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

