ON SIMPLICITY OF CERTAIN INFINITE DIMENSIONAL LIE ALGEBRAS

BY V. G. KAC¹

1. The main statements. Let $A = (a_{ij})$ be a complex $(n \times n)$ -matrix. Denote by $\widetilde{\mathfrak{G}}(A)$ a complex Lie algebra with 3n generators e_i , f_i , h_i , $i \in I = \{1, \dots, n\}$, and the following defining relations $(i, j \in I)$:

 $[e_{i}, f_{j}] = \delta_{ij}h_{i}, \quad [h_{i}, h_{j}] = 0, \quad [h_{i}, e_{j}] = a_{ij}e_{j}, \quad [h_{i}, f_{j}] = -a_{ij}f_{j}.$ Set $\widetilde{C} = \{c_{1}h_{1} + \dots + c_{n}h_{n}|a_{1j}c_{1} + \dots + a_{nj}c_{n} = 0, j \in I\}$; clearly, \widetilde{C} lies in the center of $\widetilde{\mathfrak{G}}(A)$. Set $\Gamma = \mathbb{Z}^{n}, \Gamma_{+} = \{(k_{1}, \dots, k_{n}) \in \Gamma|k_{i} \ge 0\} \setminus \{0\}.$ Let $\Pi = \{\alpha_{1}, \dots, \alpha_{n}\}$ be the standard basis of Γ . For $\eta = (k_{1}, \dots, k_{n})$ set $T_{n} = \Sigma_{i,j} a_{ij}k_{i}k_{j} - \Sigma_{i} a_{ij}k_{i}.$

THEOREM 1. Provided that $a_{ij} = a_{ji}$, $i, j \in I$, and $T_{\eta} \neq 0$ for any $\eta \in \Gamma_{\perp} \setminus \Pi$, the Lie algebra $\widetilde{\mathfrak{G}}(A)/\widetilde{C}$ is simple,

COROLLARY 1. Provided that A is a real symmetric matrix with positive entries, the Lie algebra $\widetilde{\mathfrak{G}}(A)/\widetilde{C}$ is simple.

COROLLARY 2. The Lie algebra K_2 with the generators e_1 , e_2 , f_1 , f_2 , h and the defining relations $[e_i, f_j] = \delta_{ij}h$, $[h, e_i] = e_i$, $[h, f_i] = -f_i$ is simple.

PROOF.

$$K_{2} = \mathfrak{S}\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right) / \widetilde{C}.$$

Corollary 2 has been conjectured in [1]. Further one can find a motivation for this problem. Setting deg $e_i = -\deg f_i = \alpha_i$, deg $h_i = 0$, $i \in I$, defines a Γ -gradation $\widetilde{\mathfrak{G}}(A) = \bigoplus_{\alpha \in \Gamma} \widetilde{\mathfrak{G}}_{\alpha}$. Let \mathfrak{F} be the sum of all graded ideals in $\widetilde{\mathfrak{G}}(A)$ intersecting $\widetilde{\mathfrak{G}}_0$ trivially. We set $\mathfrak{G}(A) = \widetilde{\mathfrak{G}}(A)/\mathfrak{F}$; let $\mathfrak{G}(A) = \bigoplus_{\alpha \in \Gamma} \mathfrak{G}_{\alpha}$ be the induced gradation. Note that if D is a nondegenerate diagonal matrix, then $\mathfrak{G}(DA) \simeq \mathfrak{G}(A)$; the matrices A and DA are called *equivalent*. Let C be the image of \widetilde{C} in $\mathfrak{G}(A)$; then C is the center of $\mathfrak{G}(A)$ [1]. The Lie algebra $\mathfrak{G}(A)/C$ has no graded ideals if and only if [2]

(m) for any $i, j \in I$ there exists $i_1, \ldots, i_r \in I$ such that $a_{ii_1}a_{i_1i_2} \cdots a_{i_rj} \neq 0$.

If A is the Cartan matrix of a simple finite dimensional Lie algebra \mathfrak{G} ,

© 1980 American Mathematical Society 0002-9904/80/0000-0105/\$02.00

Received by the editors September 24, 1979.

AMS (MOS) subject classifications (1970).

¹Supported in part by the NSF grant.

then $\mathfrak{G} \simeq \mathfrak{G}(A)$. In general, the Lie algebras $\mathfrak{G}(A)$ are infinite dimensional. A number of applications of these algebras in various fields of mathematics have been found in the last decade. The Lie algebra K_2 plays the role of a "test" algebra in [1]. Due to the fact that K_2 is simple, we immediately obtain a stronger form of Theorem 1 from [1].

THEOREM 2. Suppose that matrix A satisfies the condition (m). Then there are only the following three possibilities:

(i) A is equivalent to the Cartan matrix of a simple finite dimensional Lie algebra \mathfrak{G} (and $\mathfrak{G}(A) \cong \mathfrak{G}$);

(ii) A is equivalent to one of the matrices from Tables 1–3 [1], and the Gelfand-Kirillov dimension of $\mathfrak{G}(A)$ is 1 (the construction of $\mathfrak{G}(A)/C$ is given by Lemma 22 [1]);

(iii) $\mathfrak{G}(A)$ contains a free subalgebra of rank 2 and the Lie algebra $\mathfrak{G}(A)/C$ is simple.

Suppose that the matrix A is symmetric. Then there exists an invariant symmetric bilinear form (,) on $\widetilde{\mathfrak{G}}(A)$ which is uniquely defined by the properties (a) $(h_i, h_j) = a_{ij}$ and $(e_i, f_j) = \delta_{ij}$, $i, j \in I$, (b) $(\widetilde{\mathfrak{G}}_{\alpha}, \widetilde{\mathfrak{G}}_{\beta}) = 0$ for $\alpha \neq -\beta$, (c) Ker $(,) = \mathfrak{F} + \widetilde{C}$ [1]. Let σ be an involutive antiautomorphism of $\widetilde{\mathfrak{G}}(A)$ defined by $\sigma(e_i) = f_i$, $\sigma(f_i) = e_i$, $\sigma(h_i) = h_i$. On each $\widetilde{\mathfrak{G}}_{\alpha}$, $\alpha \in \Gamma_+$, we introduce a bilinear form by $B_{\alpha}(x, y) = (x, \sigma(y))$, $x, y \in \widetilde{\mathfrak{G}}_{\alpha}$. Since $\bigoplus_{\alpha \in \Gamma_+} \mathfrak{G}_{\alpha}$ is freely generated by e_1, \ldots, e_n , we can fix a basis in each $\widetilde{\mathfrak{G}}_{\alpha}$ which does not depend on A. Let $\varphi_{\alpha} = \varphi_{\alpha}(A)$ be the determinant of the matrix of B_{α} in this basis. This is a function on the space of symmetric $(n \times n)$ -matrices. It follows from Theorem 1 that provided that $T_{\eta} \neq 0$ for any $\eta \in \Gamma_+ \setminus \Pi$, the Lie algebra $\widetilde{\mathfrak{G}}(A)/\widetilde{C}$ is simple. Hence, φ_{α} is different from 0 outside the hyperplanes $T_{\eta} = 0$, $\eta \in \Gamma_+ \setminus \Pi$, and we obtain

THEOREM 3. Up to a nonzero constant factor (depending on the basis) one has:

$$\varphi_{\alpha}(A) = \prod_{\eta \in \Gamma_{+} \setminus \Pi} T_{\eta}^{c_{\eta,\alpha}},$$

where $c_{n,\alpha}$ are nonnegative integers.

REMARK. An interesting open question is to compute the exponents $c_{\eta,\alpha}$. It follows from the proof of Theorem 1 that $c_{\eta,\alpha} = 0$ if $\alpha = k\alpha_i$ or $\alpha - \eta \notin \Gamma_+ \cup \{0\}$. It is also clear that deg φ_{α} = (height $\alpha - 1$) dim \mathfrak{S}_{α} .

2. Proof of Theorem 1. Set $\mathfrak{n}_{\pm} = \bigoplus_{\alpha \in \Gamma_{+}} \mathfrak{G}_{\pm \alpha}$ and $\mathfrak{F} = \mathfrak{G}_{0}$; then $\mathfrak{G}(A) = \mathfrak{n}_{-} \otimes \mathfrak{F} \oplus \mathfrak{n}_{+}$. Since $\mathfrak{G}(A)/C$ is simple ([1, Lemma 6]) the theorem will follow from the fact that \mathfrak{n}_{-} is a free Lie algebra with free generators f_{1}, \ldots, f_{n} . To prove this, we employ the highest weight representations $M(\lambda), \lambda \in \mathfrak{F}^{*}$, of

 $\mathfrak{G}(A)$ [3]. We recall that $M(\lambda) = U(\mathfrak{G}(A)) \bigotimes_{U(\mathfrak{F} \oplus \mathfrak{n}_+)} \mathbf{C}_{\lambda}$, where \mathbf{C}_{λ} is a 1-dimensional representation defined by $\mathfrak{n}_+(1) = 0$, $h(1) = \lambda(h)$, $h \in \mathfrak{F}$. The gradation of $\mathfrak{G}(A)$ induces a gradation: $M(\lambda) = \bigoplus_{\eta \in \Gamma_+ \cup \{0\}} M(\lambda)_{-\eta}$. We set ch $M(\lambda) = e^{\lambda} \Sigma_{\eta}(\dim M(\lambda)_{-\eta})e^{-\eta}$. Clearly one has

ch
$$M(\lambda) = e^{\lambda} \prod_{\alpha \in \Gamma_+} (1 - e^{-\alpha})^{-\dim \mathfrak{Y}_{-\alpha}}.$$

From now on we will assume that A is symmetric. We recall the definition of the *Casimir operator* Ω on the space $M(\lambda)$ (in a slightly modified form, cf. [3]). The form (,) on $\widetilde{\mathfrak{G}}(A)$ induces a bilinear form on $\mathfrak{G}(A)$ which we also denote by (,). Note that (,) is nondegenerate on $\mathfrak{G}_{\alpha} \oplus \mathfrak{G}_{-\alpha}$, $\alpha \in \Gamma_+$. We define a bilinear form on Γ by setting $(\alpha_i, \alpha_j) = a_{ij}$; we set $h_{\eta} = \Sigma k_i h_i$ for $\eta = \Sigma k_i \alpha_i$. We choose in each \mathfrak{G}_{α} , $\alpha \in \Gamma_+$, a basis $e_{\alpha}^{(i)}$, $i = 1, \ldots$, dim \mathfrak{G}_{α} , and in $\mathfrak{G}_{-\alpha}$ a dual basis $e_{-\alpha}^{(i)}$. We define $\rho \in \mathfrak{F}^*$ by $\rho(h_i) = 1/2a_{ii}$, $i \in I$. Finally, we define Ω as follows:

$$\Omega(v) = ((\eta, \eta) - 2(\lambda + \rho)(h_{\eta}))v + 2\sum_{\alpha \in \Gamma_{+}} \sum_{i} e_{-\alpha}^{(i)} e_{\alpha}^{(i)}(v), v \in M(\lambda)_{-\eta}.$$

A direct verification (cf. [4, Proposition 2.7]) shows that $\Omega = 0$. This and the fact that $M(\lambda)$ is irreducible if any vector killed by all $(\mathfrak{G}_{\alpha}, \alpha \in \Gamma_{+}, \text{ lies in } M(\lambda)_{0},$ gives the following lemma (see [5] for a more precise statement).

LEMMA 1. If $(\eta, \eta) - 2(\lambda + \rho)(h_{\eta}) \neq 0$ for any $\eta \in \Gamma_+$, then the $\mathfrak{G}(A)$ -module $M(\lambda)$ is irreducible.

Now we are able to complete the proof of Theorem 1. Consider the $\mathfrak{G}(A)$ module M = M(0). The module M contains submodules $L_i = U(\mathfrak{G}(A))(M(0)_{-\alpha_i})$; set $L = \Sigma_i L_i$. Clearly, dim M/L = 1 and the $\mathfrak{G}(A)$ -module L_i is isomorphic to $M(-\alpha_i)$. Moreover, since $(\eta, \eta) - 2(\rho - \alpha_i)(h_\eta) = T_{\eta + \alpha_i}$, by Lemma 1, $M(-\alpha_i)$ is irreducible and therefore L is a direct sum of L_i 's. Hence, we have ch M/L = 1 $= ch M(0) - \Sigma_i ch M(-\alpha_i)$. This gives the following formula:

(1)
$$\prod_{\alpha \in \Gamma_+} (1 - e^{-\alpha})^{\dim \mathfrak{Y}_{-\alpha}} = 1 - \sum_{i=1}^n e^{-\alpha_i}.$$

But (1) is equivalent to the fact that n_{i} is freely generated by f_{i} , $i \in I$ (indeed, the inverse of the left-hand side of (1) is the generating function of $U(n_{i})$; but n_{i} is free $\leftrightarrow U(n_{i})$ is free [6] \leftrightarrow the generating function of $U(n_{i})$ is the inverse of the right-hand side of (1)).

PROOF OF THEOREM 2. It follows from §II 6 of [1] (see also [2, Lemma 3.11]) that each time when A is not one of the matrices of (i) or (ii), the Lie algebra $\mathfrak{G}(A)$ contains K_2 and therefore (by Theorem 1) contains a free subalgebra of rank 2.

REMARK. The problem about the defining relations for arbitrary $\mathfrak{G}(A)$ is still open; the first unclear case is $A = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$ (see the conjecture in [1, §II 7]). I think that this problem can be solved by a detailed study of the functions φ_{α} .

BIBLIOGRAPHY

1. V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izv. 2 (1968), 1271-1311.

2. B. Ju. Weisfeiler and V. G. Kac, *Exponentials in Lie algebras of characteristic p*, Math. USSR-Izv. 5 (1971), 777-803.

3. V. G. Kac, Infinite-dimensional Lie algebras and Dedekind's η -function, Functional Anal. Appl. 8 (1974), 68-70.

5. V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Advances in Math. 34 (1979), 97-108.

6. N. Jacobson, Lie algebras, Interscience, New York, 1962.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNO-LOGY, CAMBRIDGE, MASSACHUSETTS 02139