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In complex analysis one often investigates a particular class of functions on 
some domain. More often than not the domain is simply connected and if it is 
not the whole plane, it is usually taken to be the unit disk. For this is 
conformally equivalent to any other nondegenerate simply connected region 
and the conformai map induces a certain isomorphism of the given class of 
functions to a class on the disk. What doesn't go over nicely, in general, are 
boundary properties of functions. 

On the other hand if the domain is multiply connected, it is no longer true 
that any two nondegenerate ones of the same connectivity are conformally 
equivalent. Thus before we can start to examine deeper relations between 
corresponding classes of functions, we must understand how the domains 
themselves are related. 

Teichmüller space is a space of domains all of the same topological type. In 
that theory we find out how the domains are related to each other and then 
parametrize them. At least this is true for domains of finite connectivity. Once 
we do this, we can understand, for example, how the canonical domain 
functions like the harmonic measures vary real analytically in the parameters. 

The foundation of Teichmüller space theory is thus rooted in methods for 
comparing two domains of the same topological type. The theory is most 
completely worked out and in any case has the nicest expression when the 
domains involved have no boundary at all; that is are compact Riemann 
surfaces without boundary. For this reason our explanations will ultimately 
be restricted to this case. 

We start with two Riemann surfaces R and S and an (orientation preserv­
ing) homeomprphism ƒ : R-* S. Since we are really going to deal with 
conformai equivalence classes, if ƒ is homotopic to a conformai map we 
consider that S is the same as R and ƒ is the identity. Of course given two 
surfaces R, S, there are in general infinitely many choices for homeomor-
phisms ƒ, no two being homotopic. For example, here are two; the image 
regions are the same in both cases but the two images of the arc between 
punctures lie in different homotopy classes. 
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The number of choices off corresponds to the number of essentially different 
ways that S can be cut so as to become simply connected. 

We will present two methods for relating S to R from the point of view of ƒ 
and briefly describe some recent advances which clarify each of them. 

I. S arises from R by a generalized affine stretch homotopic to ƒ. The 
parameters in the stretch describe the relative geometry. This method 
originates with Teichmüller. 

IL By means of ƒ, R and S become parallel boundary components of a 
uniquely determined hyperbolic 3-manifold. This is in analogy with the 
picture of two parallel closed surfaces in euclidean space, bounding the region 
between them, ƒ being the map along normals, sending one surface to the 
other. The geometry of the hyperbolic 3-manifold then describes the relative 
geometry of R and S. This method originates with Bers. 

Now we will describe these methods in some detail. 
METHOD I. Here everything is based on the simplest possible nonconformal 

map, the affine map. We write it in normalized complex form, 

A(z)=-^^-, 0<k<\, 
V l - A : 2 

where the condition on k is determined by the requirement that A(z) be 
orientation preserving and nonsingular. Geometrically, A is a stretch of 
magnitude VK - [(1 + k)/(l - k)]l/2 > 1 along the parallel family of lines 
inclined at angle 0/2 to the real axis, and compression of magnitude I/VK 
along the perpendicular lines. Thus, 

The next step is to explain what is meant by a generalized affine stretch. 
Suppose the affine stretch A has been applied to a particular plane region Rx 

yielding the image region Sv Suppose we take conformai maps $: R -> Rx 
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and ¥: St-*S and then consider the composition 

f(z) - ¥ o A o $(z): R -» 5. 

With respect to its nonconformal character, we can describe ƒ as an affine 
stretch of magnitude VK along the lines 

{z e R: Im e'""^/2$(z) = const}, 

the pull-back under $ of the stretch Unes for A. 
Such maps ƒ are examples of Teichmiiller maps. The manner in which we 

have introduced them here is however too restrictive. They are defined so that 
locally at nonsingular points they have the structure described, not necessarily 
globally. 

The general definition is formulated as follows. The map ƒ we have just 
constructed solves the Beltrami equation on R, 

fi = tf£> M(*) - ke •-££-(,) = k^-
i(*ri 'kwr 

where q{z) = Q\zf> Q(z) = e~i9/2$(z). From a more general point of view 
we learn to think of the analytic function q(z) as a quadratic differential on R 
with invariant expression q(z)dz2 under local coordinate changes or global 
conformai maps. The stretch lines for ƒ can be described in terms of q as 

{z e R: q(z)dz2 > 0} - {z e £ : Im g(z) = const}. 

These are called trajectories (or more precisely, horizontal trajectories) of the 
differential q. For the general theory of trajectories we refer to [20], [21]. 

Now turn around and, given an analytic function q(z) on Ifc-or quadratic 
differential qdz2 if R is not a planar Riemann surface, consider the Beltrami 
equation on R, 

fi = tifz, M - k!&) /\q(z% 0 < * < 1 
(the condition that q is a quadratic differential makes this invariantly defined 
on the Riemann surface R). It has a solution ƒ which is a homeomorphism of 
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R onto a Riemann surface f(R) and is uniquely determined up to composi­
tion on the left with a conformai map. If U c R is a small neighborhood 
without zeros of q(z) then in U, ƒ has the form 

f(z) = *oAoQ(z), 

Q(z) =fZVj dz9 A(z) - (z + * z ) / V l - A:2 

and ^ is conformai on 4̂ © Q(U); ^ plays the less essential role of a 
normalizing term. Globally, the solution ƒ is obtained by patching together 
these little pieces. 

At a zero of order p, q(z)~zp and /~[,4(z('+2>/2)]2/<'+2> is a local 
homeomorphism. The general theory also allows for simple poles p — -1 
since the area Jf\q\ dx dy is still locally finite. There are (p + 2) horizontal 
trajectories-essentially the rays {z e C: Imz ( / , + 2 ) / 2 ~ 0 } - emanating from 
the zero (or simple pole). These are called critical trajectories. 

With this said, we think of ƒ as an affine stretch of magnitude VK, 
K * (k + l)/(k — 1) along the trajectories {z: q(z)dz2 > 0} of q. Moreover 
the image Riemann surface f(R) can be constructed from q(z) and k by 
patching together local coordinate neighborhoods {A ° Q(U)}9 making due 
allowance for the singular points. This process will be illustrated below. 

By introducing a parameter t in tk, 0 < t < 1, we can interpolate continu­
ously between R and f(R). 

For an example consider the situation presented in this diagram 

i 

z + kz 

v / l - * 2 

^T 

-log f 
2m 

= M M W * - I r? = f in 

17 satisfies the Beltrami equation on R with 

9(f) 

^ _ e-2niW/y/K 

2ir/K 

MO «tt) « -
1 

ktt)l' ™' J2' 
On the circles f - re*, q(S)d£2 " d02 > 0. In this manner the affine stretch 
is realized in the annulus as a stretch along the concentric circles. 
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Now return to a general surface or plane region R. The construction we 
have described corresponding to a chosen differential q is beautifully explicit 
in the following circumstances. 

Suppose R is any Riemann surface and y is a nondegenerate simple closed 
curve on R, that is, not retractable to a point or a puncture. Associated with y 
is the Jenkins-Strebel quadratic differential <p[y]dz2 (see [10], [20]). This 
remarkable differential is uniquely determined up to positive scalar multiple 
by the following properties. Cut R along all of the critical trajectories 
(globally extended) of <p[y]. Then what is left is an annular region whose 
central curves are freely homotopic to y. Consequently 

$(z) = b exp c I y<p[y] dz for suitable constants b9 c 

maps the cut R conformally onto an annulus. For instance, 

In this mapping, opposite sides of an arc running along a critical trajectory 
from one critical point to another are sent to two boundary arcs of the 
annulus which subtend the same angles at the center. 

Occasionally it is possible to write down the / — S differential explicitly. 
For example, for the 4-punctured sphere and y as shown, 

«M**-,(,-£,-2) 

UjJ' : 

and the critical trajectories run along R from 0 to 1 and 2 to oo. For the torus 
generated by a square lattice and y the simple loop arising from the line 
segment to m + ni, m> n relatively prime, in terms of its representation in the 
plane, 

<p[y]dz2 * e'* dz\ tan(0/2) * n/m. 

Here there are no critical trajectories (but only because the genus is one) so to 
obtain our annulus we must remove one of the mutually parallel closed 
trajectories in the free homotopy class determined by y. 
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Returning to our general surface R cut along the critical trajectories of 
ç>[y], the modulus of the image annulus under $, that is, M(y) • (l/2ir) log r 
where r is the outer radius of the annulus (the inner is 1) is called the modulus 
of the free homotopy class determined by y. It is of course a conformai 
invariant. It can also be described [10] as the reciprocal of the extremal length 
of the family of curves freely homotopic to y. 

Now consider the Beltrami equation on R9 

3l W[y]\f" 
0 < k < 1. 

We can explicitly describe the corresponding map ƒ and the image surface 
f(R). Namely we can express ƒ as the composition, ƒ = ¥ ° 8, » $ where $ is 
the map of the cut R onto the annulus, â is the radial contraction of it, 

«tt) - W\l/K-\ K - X, - (1 + * ) / (1 ~ *)» 
and ¥ is the conformai map of the image annulus into that Riemann surface 
obtained by identifying the opposite arcs on its boundary. Thus expressed in 
the form of a diagram, 

Now we return to our original problem. We are given two compact 
Riemann surfaces without boundary and (we can assume) a quasiconformal 
map ƒ between them: 

<5" *<=* ) ^ 

According to a celebrated theorem of Teichmüller (see [4]), ƒ is homotopic to, 
hence we may assume equal to the solution of a Beltrami equation, 

A k-2-f 
W\fz' 

Kj = (1 + k)/ (1 - k), 0<k<l 

for some quadratic differential <p on R. Furthermore, <p is uniquely de­
termined up to a positive scalar factor by the homotopy class of/. This means 
ƒ is a generalized affine stretch of magnitude yKf along the trajectories of <p. 
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Teichmüller's theorem would remain true if R were a finitely punctured 
closed surface-like the /i-punctured sphere-but then <p may have simple poles 
at the punctures. 

Now we ask, how is <p determined geometrically by the initial surface R 
and the homotopy class of/? 

In the simplest case, ƒ is an annular map associated with <p = <p[y] for some 
y on R. The image surface S can be explicitly constructed from R, given k, as 
before. In general, however, the situation is as follows. 

Define a number K in terms of the extremal problem 

\/K - inf M(f(8))s/M(S)R ( > \/Kf) 

where the infimum is taken over all simple nondegenerate curves 8 on R. The 
inequality is known to be true generally and the ratio Af(ƒ(§))/M(8) = Kfx 

if and only if <p = <p[y] for some y and S = y. 
Choose any sequence of simple curves {yn} on R with lim M(f(yn))/M(yn) 

= K~l. Normalize the differentials <p and {<p{y„}} to have unit area 
SSR\ - \ dx dy — \. The following statement involves results of Thurston [22], 
Kerckhoff [12], Masur [18], and the author's joint work with Strebel [15]. 

FACT. Lim <p[yj = <p, K = Kj> and the minimizing sequence {y„} is 
uniquely determined "asymptotically". 

We can picture this as follows. Consider the map fn constructed as the 
solution of 

Thenar R -> Rn is an affine stretch of magnitude VK along the trajectories 
of <p[yn] resulting in the surface R„. The complement of the critical trajectories 
of <p[yn] in R is an annular region which is swept out by closed trajectories of 
<p[yn] which are in the free homotopy class of yn. As n increases, in general, 
the annular region becomes longer and thinner, while all the time filling the 
surface R. The simple closed curves sweeping out the annular regions con­
verge to the noncritical trajectories of the limit differential <p. In general, 
however, these are not closed curves but rather determine a "measured 
foliation" of R in the sense of Thurston. Meanwhile, the image surfaces R„ 
converge to S. We summarize in the following diagram: 

(ƒ; <p; k) . c 

(fn;<p[yny>k) K« 

Using an idea of Thurston, the sequence {yn} can be characterized geomet­
rically as follows. 

inf f llmV^ <fe|= lim IzhlsL for alla on/^ 
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where the integral is the total variation of |Im V<p dz\ * |Im dQ\ over OQ as 
a0 runs through the free homotopy class of a and /(a, yn) denotes the 
geometric intersection number. This is the smallest possible number of times 
curves freely homotopic to a and to yn cross each other, or alternatively, the 
number of times the Poincaré geodesic in the free homotopy class of a crosses 
that in the free homotopy class of yn. Finally {a„} is a sequence of positive 
numbers essentially depending only on {yn}. That is, if {bn} is any positive 
sequence such that 

lim /(«, yn)/bH 

exists for all a and is ^ 0 for some a then 

lim ajbn * c > 0 

exists. 
In other words, <p determines, and in fact is completely determined by, the 

sequence {yn} of simple closed curves on R. The sequence {yn} is in turn 
determined by R, S and the homotopy class of ƒ. The TeichmüUer map ƒ is 
the generalized affine stretch of magnitude VK in the "direction" lim yH. 

If ƒ actually maps R onto itself then we can also consider the one-to-one 
correspondence ƒ„: <p[y] -»<p[f(y)] between the totality of Jenkins-Strebel 
differentials on R. Because the differentials [<p[y]} are dense [18], using the 
technique suggested previously, ƒ, extends to a homeomorphism f+ of the real 
(6g — 7)-dimensional sphere 2 of all normalized quadratic differentials on R 
to itself. Suppose that no iterate of ƒ is homotopic to the identity and that ƒ 
does not preserve any collection of mutually disjoint simple loops. Then 
according to Thurston [22], f+ has exactly two fixed points on 2. In general, 
however, these differ from the TeichmüUer differential associated with/. 

This completes my description of how one surface is obtained from another 
by a generalized affine stretch along the trajectories of a quadratic differen­
tial. The point of view I have expressed, of basing the discussion on Jenkins-
Strebel differentials, originates in Masur's thesis [17] where the explicit nature 
of their trajectory structure was used to obtain the first precise information 
concerning the asymptotic behavior of at least some geodesic rays in 
TeichmüUer space. More recent work of Hubbard and Masur [9] (see also 
[12], [22]) shows how any quadratic differential on R can be completely 
characterized by the metrical/topological properties of its trajectory struc­
ture. Above aU, Thurston's studies [22] of measured foUations have influenced 
all recent work in this area. 

METHOD II. I want to start by explaining what I mean by two surfaces 
being parallel. In euclidean space if we take a closed, compact surface R and 
move out a short distance along the normals we get a parallel surface S. The 
space in between is homeomorphic to R X [0, 1]. The natural map/: R-+S 
obtained by moving along normals has the property that for any simple curve 
y c ^ y and /(y) c S are the boundary components of a cylinder in the 
3-manifold. 

Returning to our set-up/: R-+S,Ra, closed, compact surface, we wiU find 
a natural 3-manifold 9H such that (i) 991L * R U S, (ii) 911 * R X [0, 1], 
and (iii) y c R and f(y) c S bound a cylinder in (DIL for any simple curve y 
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on R, by moving along the fibers y X [0,1], y E y. Strictly speaking, to carry 
this out we have to reverse the orientation off. 

To understand how this representation is obtained, start by realizing R in 
its universal covering surface, which we take to be the upper half-plane H + , 
under a fuchsian group I\ R * H + /T . T also acts in the lower half-plane H_ 
and this action is symmetric under reflection. The corresponding map / : 
R' * H _ / r -* R is anticonformal. 

^ ^ v ~ ^ H+ 

o Now each Möbius transformation z->(az + b)/(cz + d), ad — be ¥* 0 is 
the restriction to the complex plane of a uniquely determined Möbius 
transformation that maps the upper half 3-space H3 onto itself. There is an 
elegant formula for it if one uses quaternions (i,y, k) and for z * x + iy E C 
writes the point over it (z, /) = (x, y, t) e H3 as 

h = z + /ƒ - x +yî+tJ+Qk. 
Then the Möbius transformation in H3 is 

h^K * (ah +b)(ch +rf)"!. 
The extension is conformai and an isometry in the hyperbolic metric ds/t 
which is complete in H3. 

In any case T can be extended to H3 and since it then consists of conformai 
transformations preserving R, T preserves each half-plane in H3 inclined to 
the real axis R. 

The quotient is a 3-manifold 91L(r), 

9it(r)«H3uH+ uH_/r»i* x[o, i] 
with T/IT E [0, 1] parametrizing the parallel sheets which fill up 91L(T). Each 
of these is the quotient with T of a half-plane inclined at some angle r to R. 
The interior of 9H(r) is a complete hyperbolic manifold while its boundary is 
the union of the two Riemann surfaces R, R' whose conformai structure 
comes from H + u H_. The reflection z-*z extends to H3 as the reflection 
about a vertical plane and therefore the map J: R'-*R extends to an 
involution of 91LÇT) pointwisc? fixing the middle sheet R X {1/2}. For each 
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simple closed curve y c R' the cylinder {J(y) X [0, 1]: y e y} in 9It is 
bounded by y and /(y). 

Choose a standard set of generators for T, 

r - (y\> • • > Y2*; YiYiYfS^""1 • • • • *<*)• 

Vary the coefficients of the jj not only in R but also in C, keeping the relation 
satisfied. As we do this on the one hand we sweep out a connected open set in 
this coefficient space, and on the other hand the corresponding groups fill up 
what is called the quasifuchsian space of kleinian groups. First we will 
describe the situation locally, then globally. 

As the coefficients of the generators {*£} vary slightly but still satisfy the 
relation, the new transformations generate a new kleinian group which is the 
isomorphic image 0(T) of I\ In fact, the isomorphism 0 is geometrically 
determined in the following manner. There is a quasiconformal map G of 
H3 u C U {oo} onto itself which satisfies 

(G o y)(x) - 0(y) o G(x) for all x e H3 u C u {oo}. 

This means that instead of preserving R u {oo}, 0(T) preserves the Jordan 
curve G(R u {oo}), and instead of preserving a half-plane inclined to R, 0(T) 
preserves a crinkled half-plane inclined to G(R u {oo}): 

istrrrrtr. 
Furthermore the map G projects to a homeomorphism 

g: 91t(r) ^ 911(0) = G(H+) u G(H_) u H3/9(T), 

j I 11 , ,w), • | 

tW :^J 
The two Riemann surfaces G(H+)/0(T) and G(H_)/0(T) are tied together by 
the fact they bound a (complete) hyperbolic 3-manifold which is symmetric 
under J*. 

Being quasiconformal deformations of the fuchsian group T, the groups 
0(T) are called quasifuchsian. The set of all such groups-that is quasifuchsian 
space-can be characterized as follows. 
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Let (S0, S, /*) be any triple consisting of two Riemann surfaces SQ, S of 
genus g > 2 and /*: S0 -» S an orientation reversing homeomorphism. There 
exists a quasifuchsian group 0(T), uniquely determined up to conjugation, 
such that 9IL(0) represents the triple in the manner just described: 

More formally, there are conformai maps A0, h of the components of 3911(0) 
onto Ŝ  and S respectively such that 

This process is called simultaneous uniformization because the two surfaces 
SQ, S are being uniformized by a single group. 

We have just introduced the quasifuchsian space of kleinian groups. For 
any kleinian group, in particular for the quasifuchsian groups 0(T), a model 
for Int 9IL(0) can be constructed in H3 by taking the Poincaré fundamental 
polyhedron 9(9) with some prescribed center, say O. Its faces are automati­
cally arranged in pairs and when these are identified, Int 911(0) results. The 
intersection of the euclidean closure <dP(0)~ of ^(0) with C u {00} is a union 
of polygonal faces. The sides of these are arranged in pairs, and when these 
are identified, 3911(0) results. But also from the point of view of the 
fundamental polyhedron we can define what it means for a sequence of 
hyperbolic 3-manifolds {9Hn} to converge to another one 91L: Namely the 
corresponding sequence of fundamental polyhedra representing 91Ln con­
verges to that representing 911. This phenomenon is called geometric conver­
gence of groups and was first described explicitly by Jorgensen [11]. We omit 
mention of many details. 

The basic theory of quasifuchsian groups originates from work of Bers [3] 
and Maskit [16] and the study of these groups in space relies on Gehring's 
extension theorem [8]. The original formulation of simultaneous uniformiza­
tion by Bers was entirely in terms of the two bounding surfaces 39lt(0). 
However in joint work with Earle [7] we find a great deal of additional 
structure by focusing on the entire manifold 911(0). We will see an example 
later. 

In any case, it is time to return to the original question of describing the 
relationship/: R-* S. Apply simultaneous uniformization to the triple, 

(R\S9foj): 

( i i • i r i i ! 
\ : : : : ; : : ! 

—r—.R 

i ' 

-L i / ? ' 
~id 

;oii(0) 

11 
i i t 

i i i i i 

/ ? ' -

J J* ~fJ 

The diagram is meant to suggest that the restrictions of g to R' and R are 
homotopic to the maps identity and ƒ respectively. The geometry of the 
relation ƒ: R -> S is now contained in the geometry of the quasifuchsian 
group 0(O or hyperbolic 3-manifold 911(0). 
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This description is perhaps not as immediately appealing as that of Method 
I. On the other hand, unlike Method I, it is intimately and directly connected 
with the analytic structure of Teichmüller space. The complex parameters in 
the generators (0(ty)} not only give rise to a set of analytic parameters but 
their natural domain of existence is relatively compact. Its boundary is 
therefore a very natural boundary of Teichmüller space: it is called the Bers 
boundary. 

APPLICATION. NOW we will see these two methods in action together. There 
are two basic operations on plane domains or Riemann surfaces: pinching 
and twisting. We will compare how each is handled by the methods. 

In describing the two operations, for simplicity and definiteness, we will 
deal with a surface R of genus two, and a simple curve y cutting R into two 
halves. 

PINCHING. Cut out a thin annular neighborhood about y and sew in ever 
thicker ones in its place (larger modulus). We get a one (real) parameter 
family ft: R-^> Rt depending on the choice of annular neighborhood that 
looks as follows: 

TWISTING. A twist of an annulus is the following homeomorphism of an 
annulus onto itself that leaves its boundary pointwise fixed. The inner 
contour is kept fixed while the outer is rotated counterclockwise by 360°. An 
arc between the boundary contours 

© 
becomes twisted around once. Now on the surface R, take a thin annular 
region about y, apply the twist in this, and extend it to all R by setting it 
equal to the identity outside. There results a homeomorphism T: R-+R 
called a Dehn twist which is not homotopic to the identity and whose 
homotopy class depends only on the free homotopy class of y. 

Of course T can be iterated. 
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METHOD I. We will construct from R and y a canonical one-parameter 
family of pinched surfaces {Rt}. For this family and then also for the Dehn 
twist, we will explicitly display the generalized affine stretches (Teichmüller 
maps) in the homotopy classes. Let <p[y] denote the Jenkins-Strebel differen­
tial corresponding to y. Consider the Beltrami equation, 

fi/f.--t<p[y]/\<p[y]\, 0<t<i. 
We get the following picture, letting^ denote a solution and t -> 1. 

<zv o * 

o „ = rin2"(,-"\ w J 

h 

In terms of the annular image of the cut R, we have the radial stretch. At the 
last step when the annulus becomes ever thicker the outer contour becomes 
the point at oo. However had we normalized the annulus so that the outer 
contour is of unit radius, then the inner contour approaches the origin. 
Consequently we say that the limit results in two once-punctured disks, one 
resulting if you stand on the left side of R, the other if you stand on the right. 
Each punctured disk in turn, represents a punctured torus obtained by 
identifying the paired boundary arcs. 

Thus we have explicitly described a process of pinching. The description of 
twisting by Method I is much the same. For this case we consider the 
Beltrami equation on R, 

_ in/2M ^ M 
/ ' / / ' l + (m/2M) \<p[y]\' M " L Y j 

where n is any positive or negative integer. The solution gives us an exphcit 
twist Tn of order n. 

rplt 

o. t7 = n f i , n / i l f 

t- * * * * * * * 

'Q' 
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The bottom line shows the twist in the annulus, the arc between the boundary 
contours comes from the corresponding arc on JR. As n -* oo there is no 
apparent limiting situation except that the arc becomes asymptotic to a 
concentric circle. One might note that the limit of the Beltrami coefficient as 
n -» oo is - 1 , the same as when t -* 1 in pinching. 

This description is taken from a joint paper with Masur [14]. 
METHOD II. The operation of pinching appears as follows in terms of 

simultaneous uniformization. 

The top line consists of some of the same surfaces as in Method I. In terms of 
the fixed presentation T = < y , , . . . , y2g> of I\ each sequence {0„(*fy)} con­
verges to a Möbius transformation O^iyJ) and 0^: T -» t^ = 
^ooCïi)» • • • > ôo(Y2g)) is a n isomorphism onto a kleinian group. The mani­
folds 9IL(0„(r)) converge to 911(1^) and Int ?ft(TJ s&R X (0, 1). The re­
flections J* converge to a degenerate map / £ sending y to a point, that is the 
pair of punctures, but still with the property that any simple curve 8 c R' 
and the possibly degenerate /£>(8) bound a cylinder in Int ^ ( T ^ ) . 

The operation of twisting appears in terms of simultaneous uniformization 
like this: 

•M • ; TO; ; ." jA \ . •-:*(?„) ; : • : ' Q 'mn 

On the top line, all the surfaces are the same, namely R; it is only in the 
relation to the bottom R' that the situation is changing. If 8 c R' denotes the 
simple curve crossing y as indicated, J*(8) winds around /(y) more and 
more, yet bounds a cylinder in ^t(Ôn) with 8. At the last step, the internal 
twisting in 911(0,,) becomes so severe that a "singular locus" must develop. 
The 3-manifolds {911(0,,)} converge to 9lt(r*) with the following properties. 

(i) 39IL(r*) has two components, one conformally equivalent to R, the 
other to/*', 

(ii) 9lt(r*) is homeomorphic to the result of removing from 91L(r) a circle 
parallel to y and /(y). Also, 91t(r*) is homeomorphic to the result of 
doubling 911(1^) across the two once-punctured tori constituting its top 
boundary components. 
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(iii) T* = <roo, t} where t is a parabolic transformation. Furthermore 
lim0/I(Y,) = 0oo(Yj,), 1 <J<2g. 

We have presented two principal methods for comparing two surfaces. 
Method I, the generalized affine stretch, has deep connections with the 
geometry of curves and homeomorphisms of surfaces. Method II, placing two 
surfaces to be parallel boundary components of a hyperbolic 3-manifold, has 
ever broader ramifications. For quasifuchsian space is but the simplest of the 
spaces of kleinian groups-that is, discrete groups of Möbius transformations. 
The corresponding product manifolds are the simplest class of hyperbolic 
3-manifolds. 

These methods provide the basis for understanding the geometry of 
Teichmüller space. With this said, it is time to formally present Teichmüller 
space and to indicate briefly how this is so. We will stick to the case of a 
compact surface R of genus g without boundary. General references are [2] 
and [5]. 

The geometric definition of Teichmüller space Tg is 

Tg = {(S, / ) | ƒ: R -» S is an orientation preserving homeomorphism, 

subject to the equivalence (S^fx) = (S, ƒ) if and 

only if fx ƒ " ! : S -+ Sx is homotopic to a conformai map}. 

In particular (R, id) is treated as the origin and (R, f) = (R, id) if and only if 
ƒ is homotopic to a conformai automorphism of R. 

By Teichmüller's theorem we may assume that each ƒ is a Teichmüller map, 
that is a solution of the equation f£/fz = k<p/\q>\9 0 < k < 1, for some 
quadratic differential <p. The distance between (R> id) and (S,f) is then 
defined to be (log K)/2 where K = (1 + k)/{\ — k). Analogously, distance 
is defined between two general points thereby obtaining a metric, called the 
Teichmüller metric, on Tg. The geodesic ray emanating from (R, id) and 
passing through (£, f) consists of all pairs (Sx,fx) corresponding to the same 
q> as k varies, 0 < k < 1. 

An equivalent definition of Tg is 

Tg = (911(0): 0(T) is quasifuchsian and there is a homeomorphism 

g: 9H(r) -* <31t(0) which is conformai on R' c 991L(r)}. 

In this definition ^ft(0x) = 911(0) if and only if for some Möbius transforma­
tion T, 0j = T0T~x. Its correspondence to the original definition is through 
the relation 

(S,f)±+(R',S,foj) 

with simultaneous uniformization applied to the triple to obtain 0. 
Tg is a complex analytic manifold of dimension 3g — 3. This was first 

completely established by Ahlfors [1] using periods and zeros of abelian 
differentials. Later (see [2], [5]), Bers showed that by using the quasifuchsian 
groups (0(r)}, the complex structure could be obtained much more easily, 
although rather indirectly. Recently in the joint work with Earle cited 
previously, we show that a simple and natural geometric procedure intrinsic 
in the Riemann surfaces also gives rise to the complex structure. 
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The group Aut+R/~ of orientation preserving homeomorphisms h of R 
onto itself, two being equivalent if homotopic, acts on Tg as (S,f)^>(S,fh). 
This is a biholomorphic automorphism in terms of the complex structure and 
an isometry in the Teichmüller metric. In particular the Dehn twist T about y 
on R so acts. This group acting in Tg is called the Teichmüller modular group 
Tg. For g « 1 it essentially reduces to the classical modular group. 

While Tg is topologically equivalent to a ball in C3*""3, its metric and 
complex analytic structure are quite different from that which would occur if 
it were also metrically or biholomorphically equivalent. Indeed, a celebrated 
theorem of Royden [19] asserts that the only biholomorphic automorphisms 
of Tg are those of Tg, and Earle and Kra [6] adapted his result to show these 
are the only isometries as well. 

Our discussion of pinching and twisting can now be summarized in the 
following diagram of the Teichmüller space T2 with origin O = (R, id). 

There is a boundary point or "cusp" P consisting of two once-punctured 
tori, the point at infinity of the geodesic ray from O constructed with the help 
of the Jenkins-Strebel differential. The cusp P can be described equally well 
as the isomorphism 9^: T-^T^ onto the kleinian group T^. Here T^ * 
<0oo(Yi)> • • • > 0oo(Y4» w h e r e M Y , ) * U m 0/(Yy) a n d foe isomorphism 0, cor­
responds to a point on the geodesic ray. Actually, P lies in the "boundary 
space" consisting of all deformations of the two once-punctured tori. 

The orbit Tn(0\ — oo < /i < oo, under the element T &Tg arising from 
the Dehn twist about y c R, approaches P "tangentially". This approach can 
be described in either of two ways. The Teichmüller disk determined by O 
and P is the image in T2 of the unit disk A * { f 6 C : |f | < 1} under the 
injection Ç-*(Sç9fç) where fs is a solution of w2/wz « j<p[y]/|<p[y]|. It is 
totally geodesic in T2 and the point S = -1 corresponds to P. The twist T 
maps it onto itself and the pull-back of T to A is a parabolic transformation 
with fixed point -1 [14]. 
_ Alternatively, the orbit Tn(0) consists of a sequence of kleinian groups 
0n(T). The 3-manifolds 9H(0n) do not converge to the product manifold 
911(1^) but rather to 9lt(r*). This is because the generators {9n(yj)} of 0n(T), 
although converging to the generators {^(ty)} of T^ do so "tangentiaUy" in 
terms of the coefficients. This phenomenon was described by Jorgensen [11] 
and we must refer there for details. 

In conclusion, I have tried to expose the geometric underpinnings of 
Teichmüller space theory. Inevitably and perhaps surprisingly, we are led to 
3-dimensional hyperbolic manifolds. On a much grander scale, the recent 
results of Thurston show that the study of such manifolds to a large extent 
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coincides with the study of general 3-dimensional manifolds. Yet this can all 
be viewed as but one aspect of the global study of analytic functions. We at 
Minnesota are bullish on complex analysis. 
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