A POINCARÉ-HOPF TYPE THEOREM FOR THE DE RHAM INVARIANT

BY DANIEL CHESS

The Poincaré-Hopf theorem relates the Euler-characteristic of a manifold to the local behavior of a generic vector-field on the manifold in a neighborhood of its zeroes. As a corollary of this, by taking the gradient, one can calculate the Euler-characteristic of a manifold from a local knowledge of a generic map to R^1 around its singular points. We prove an analogue of this theorem for calculation of the de Rham invariant of 4k+1 dimensional orientable manifolds from a map to R^2 .

For 4k + 1 dimensional orientable manifolds we have the de Rham invariant d(m). This invariant is

- (a) the rank of the 2-torsion in $H_{2k}(M)$,
- (b) $\hat{\chi}_Q(M) \hat{\chi}_2(M) \mod 2$ where $\hat{\chi}_F(M)$ is the semicharacteristic of M with coefficients in F,
- (c) $d(M) = [w_2w_{4k-1}(M), [M]] = [v_{2k}sq^1v_{2k}(M), [M]],$ where $w_i(M)$ is the *i*th Stiefel-Whitney class and v_i is the *i*th Wu class of M.

For the equivalence of these definitions see [L-M-P]. The de Rham invariant is important in the theory of surgery; see [M] or [M-S].

Definition of the local invariant. Let M^m , N^n be C^∞ manifolds. Let $C^\infty(M, N)$ be the space of C^∞ maps from M to N topologized with the C^∞ topology. Within $C^\infty(M, N)$ we have a dense (in fact residual) subset G(M, N) of maps which are generic in the sense of Thom-Boardman [B] and satisfy the normal crossing condition [G-G]. This second condition is essentially that f is in general position as a map of its singularity submanifolds to N.

Let $f \in G(M, R^2)$; then df is of rank 2 except on a collection of disjoint closed curves in M, the singular set of f, $S_1(f)$. At points of $S_1(f)$, df is of rank 1. Restricted to $S_1(F)$ f is an immersion except at a finite set of points, $S_{1,1}(f)$, the cusp points of f. $S_1(f) - S_{1,1}(f) = S_{1,0}(f)$ is the set of fold points of f. Suppose $x \in S_{1,0}(f)$ then we can choose coordinates x_1, \ldots, x_n around x and coordinates y_1, y_2 around f(x) so that

$$f(x_1,\ldots,x_n)=(x_1,x_2^2+x_3^2+\cdots+x_k^2-x_{k+1}^2-\cdots-x_n^2).$$

Received by the editors February 5, 1980 and, in revised form, March 27, 1980. 1980 Mathematics Subject Classification. Primary 57R45, 57R20; Secondary 57R70.

Similarly if x is a cusp point we can choose coordinates so that

$$f(x_1,\ldots,x_n)=(x_1,x_2^3+x_1x_2+x_3^2+\cdots+x_k^2-x_{k+1}^2-\cdots-x_n^2).$$

Now we quote a result from [L].

THEOREM. Let M^m , m > 2 be of even Euler characteristic; then given $f \in G(M, R^2)$, f is homotopic to an f_1 in $G(M, R^2)$ with no cusp points.

In the case that $f \in G(M, \mathbb{R}^2)$ has no cusps $f|S_1(f)$ is an immersion. The normal crossing condition guarantees that $f(S_1(f))$ crosses itself in a finite number of double points with no triple points. Let

$$V(f) = \{ y \in \mathbb{R}^2 | f^{-1}(y) \cap S_1(f) = 2 \text{ points} \}.$$

Let $N(S_1(f), M)$ be the normal bundle to $S_1(f)$ in M and let G be the bundle over $S_1(f)$ defined by the following exact sequence:

$$T(M)|S_1(f) \xrightarrow{df} f^*T(R^2) \longrightarrow G \longrightarrow 0$$

where if M is a manifold T(M) denotes its tangent bundle. Use of the (second) intrinsic derivative [L], [B] allows definition of a symmetric bilinear form

B:
$$N(S_1(f), M) \otimes N(S_1(f), M) \rightarrow G$$

on $N(S_1(f), M)$ with values in G. B is nondegenerate on $S_{1,0}(f)$ and has one-dimensional kernel on $S_{1,1,0}$. Given $x \in S_{1,0}(f)$ and a choice of an orientation of G_x , B_x is a nondegenerate bilinear form on $N(S_1(f), M)_x$. Define the absolute index a(x) at x by $a(x) = \min(\operatorname{index}(B_x), m-1 - \operatorname{index}(B_x))$. Note that a(x) is independent of the choice of orientation of G_x .

Explicitly suppose C_j is a component of $S_1(f)$ with no cusps, then $f|C_j$ is an immersion so $N(f(C_j), R^2)$ the normal bundle to $F(C_j)$ in R^2 is well defined, isomorphic to G, and trivializable. Let $T: N(f(C_j), R^2) \to R^1$ be a trivialization. Let $D(C_j, M)$ be a choice of normal disc bundle to C_j in M. By a slight abuse of notation we consider $f: D(C_j, M) \to N(f(C_j), R^2)$; let $g_x: D_x(C_j, M) \to R^1$ denote the function

$$g_x = T \circ f \colon \ D_x(C_j, M) \longrightarrow R^1.$$

Then $\{g_x | x \in C_j\}$ is a differentiable family of functions on the fibers of $D(C_j, M)$, each g_x has a Morse singularity at x and the form B_x is given by d^2g_x .

Let M^m be orientable with n=2k+1; then M has zero Euler-characteristic so use the theorem of Levine to choose $f \in G(M, \mathbb{R}^2)$ with no cusps. Let C_j be a component of $S_1(f)$; as M is orientable $N(C_j, M)$ is trivializable. Furthermore the choice of trivialization T above makes B a nondegenerate symmetric bilinear form on $N(C_j, M)$. Thus the structure group of $N(C_j, M)$ is given a reduction to $O^+(p, m-p-1)$, the orientation preserving components of

O(p, m-p-1). For $p \neq 0, m-1, O^+(p, m-p-1)$ has two components. Define $i(C_j) \in \mathbb{Z}/2\mathbb{Z}$, the index of C_j , by $i(C_j) = 0$ if and only if $N(C_j, M)$ is the trivial $O^+(p, m-p-1)$ bundle and $i(C_j) = 1$ if and only if $N(C_j, M)$ is the nontrivial $O^+(p, m-p-1)$ bundle. Note that $i(C_j)$ is independent of all choices of trivialization and orientations.

Define $\tau(f) \in \mathbb{Z}/2\mathbb{Z}$ by

$$\tau(f) = \sum i(C_j), \quad C_j \text{ a component of } S_1(f).$$

Define $t(f) = |V(f)| \mod 2$.

Statement of results.

PROPOSITION A. $r(f) = t(f) + \tau(f)$ is independent of the choice of $f \in G(M, R^2)$ without cusps, so one can define $r(M) = r(f), f \in G(M, R^2)$ without cusps.

COMMENT. One can, with a little more effort, still define r(f) for $f \in G(M, R^2)$ even when $f \in G(M, R^2)$ has cusps. However in this case r(f) is no longer independent of f.

PROPOSITION B. r is a homomorphism from oriented cobordism to $\mathbb{Z}/2\mathbb{Z}$; that is

- (a) If [M] = [N] in Ω_{2k+1} then r(M) = r(N),
- (b) $r(M_1 \cup M_2) = r(M_1) + r(M_2)$.

Let $\chi(M)$ be the Euler characteristic of M reduced mod 2.

(c)
$$r(M^{2k+1} \times N^{2p}) = r(M^{2k+1}) \cdot \chi(N^{2p})$$
.

PROPOSITION C.

- (a) Let M^{4k+1} be an orientable manifold then r(M) = d(M).
- (b) Let M^{4k+3} be an orientable manifold then r(M) = 0.

Thus Proposition C gives a way of determining the de Rham invariant, which is intersection theoretic in character, from the local behavior of a map M to R^2 around its singular set. It is illuminating to consider such an f as a pair of Morse functions in general position with respect to each other.

Sketch of proofs. Proposition A is proved by a careful analysis of a homotopy F from f_0 to f_1 where f_0 and f_1 are different choices of f on M^{2k+1} . We can take $F \in G(M \times I, R^2 \times I)$. First we reduce to the case that F has no dovetail singularities. In this case $S_1(F)$ is an embedded surface in $M \times I$ intersecting $M \times \{0\}$ and $M \times \{1\}$ normally in $S_1(f_0)$ and $S_1(f_1)$. On the interior of this surface we have circles of cusp points separating the surface into regions of constant absolute index. Let R_p be the union of the regions of absolute index p. Let $i(R_p) = \Sigma i(C)$ C a component of $\partial(R_p)$, then analysis of the cusp

singularity yields the equation

$$\sum_{i=0}^{k} i(R_p) = \tau(f_0) + \tau(f_1).$$

For $p \neq k$ it is straightforward to prove $i(R_p) = 0$. As in the case that F has no dovetails we have

$$t(f_0) = t(f_1) \bmod 2.$$

Proposition A reduces to showing $i(R_k) = 0$. This is easy for k odd, but subtler for k even. For k even we prove

LEMMA. Let P be a component of R_k ; then P is a closed surface P^1 minus a collection of discs and P^1 is of even Euler characteristic. From this fact it follows from $i(R_k) = 0$.

Proposition B is proved by first observing that r(M) remains invariant if M is cut open and repasted along a codimension 1 submanifold of the form $S^1 \times F$ by a pasting $\phi: S^1 \times F \longrightarrow S^1 \times F$ with $\phi(x \times F) = x \times F$. Given this observation the results of [A] allow immediate demonstration of bordism invariance. For the relation of cutting and pasting and cobordism see [K-K-N-0].

Proposition C follows from explicit construction of the examples (using, for instance, (c) of Proposition B) in each dimension 4k + 1 on which r and d agree and are nonzero. This, in addition to the result of [Br] that d(M) vanishes if and only if [M] has a representative fibered over the two-sphere, is enough to show r and d have the same kernel and same range and hence agree. Finally to show $r(M^{4k+3}) = 0$ we use the results of [A-K] to choose a representative of [M] fibered over S^2 . On such a representative r(M) is zero by the observation of the previous paragraph.

REFERENCES

- [A] D. Asimov, Round handles and non-singular Morse-Smale flows, Ann. of Math. (2) 102 (1975), 41-54.
- [A-K] J. C. Alexander and S. M. Kahn, Characteristic number obstructions to fibering oriented and complex manifolds over surfaces, Univ. of Maryland, College Park, Maryland (Preprint).
- [B] J. M. Boardman, Singularities of differentiable maps, Publ. Math. Inst. Hautes Étude Sci. 33 (1967), 21-57.
- [Br] R. L. W. Brown, Cobordism and bundles over spheres, Michigan Math. J. 161 (1969), 315-320.
- [G-G] M. Golubitsky and V. Guillemin, Stable maps and their singularities, Springer, New York, 1974.
- [K-K-N-0] V. Karras, M. Kreck, W. Neumann and E. Ossa, Cutting and pasting of manifolds: SK-groups, Mathematics Lecture Series, No. 1, Publish or Perish, Boston, Mass., 1973.
 - [L] H. Levine, Elimination of cusps, Topology 3, supp 2 (1965), 263-296.

- [L-H-P] G. Lusztig, J. W. Milnor and F. P. Peterson, Semi-characteristics and cobordism, Topology 8 (1969), 357-360.
- [K] J. Morgan, A product formula for surgery obstructions, Memoirs Amer. Math. Soc. No. 201 (1978).
- [M-S] J. Morgan and D. Sullivan, The transversality characteristic class and linking cycles in surgery theory, Ann. of Math. (2) 99 (1974), 463-544.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

Current address: Courant Institute of Mathematical Sciences, New York University, New York, New York 10012