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Pseudodifferential operators may be considered from the ontological, the 
teleological, or the archeological standpoint: what are they, what do they do, 
where do they come from? Quick answers are that they are linear operators 
expressed via the Fourier transform as (formal) integral operators, that they 
are used extensively in the study of partial differential equations, and that the 
direct line of descent is through singular integrals. We shall consider each 
point in more detail and detect as well a thread of Hegelian dialectic. 

If P - 2aa(x)Da is a differential operator in Rn and e$ denotes the 
exponential e^x) » exp(/x • |), then Pe^x) * p(x9 £)^(*), where p(x, Q * 
2aa(jc)£a. Expressing a test function as a sum of exponentials by the Fourier 
inversion formula, one obtains 

Pu(x) - ƒ eix*p{x, 0(0 d'i « ffe*tp(x, 0<y) dy d% (1) 

where d'i = (27r)"n d£. Thus the differential operator P is expressed formally 
as an integral operator defined by a conditionally convergent "oscillatory" 
integral by means of the "symbol'*/?. Here/? = pr+ pr-\ + • • • , where/*,, is 
homogeneous of degree j in £. Thus at least locally in x one has estimates for 
the derivatives 

\D&(P - 2 . Pk)\ < QftllK-1-1 if III > 1. (2) 

These estimates may be used in conjunction with integration by parts in (1) 
to convert (1) into a convergent integral and verify directly that P maps 
Cc°°(Rn) to C°°(Rn). Now if Q is a second differential operator, with symbol 
# * °3 + 4- i + ' " • y then the composition QP has symbol which can be 
calculated by Leibniz' rule: 

q*p-2("irlrHDgqD!p. (3) 
In particular the highest order part is just the product prqs. Note in passing 
that the identity operator has symbol 1. 
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Several points might be noted here. First, (1) makes sense for symbols p 
which are not polynomials in £, for example symbols with asymptotic expan
sions as infinite sums of terms homogeneous in £ of decreasing order: 
p ~pr + pr-\ + • • • , understood in the sense of (2). Second, such a symbol 
will again map C™(Rn) to C°°(Rn). Third, the composition formula (3) may 
be expected to hold, in the same asymptotic sense. Fourth, ifp is elliptic, i.e. if 
pr(x, £) =?*= 0 when £ ̂  0, £ e Rn, then one may take q_r = p~l and use (3) 
to solve q ° p ~ 1 asymptotically with q ~ q_r + #_r_i • • • . Thus one 
would have an algebra of operators which includes the differential operators 
and also the parametrices (approximate inverses) of elliptic operators, and the 
regularity theory should be a consequence. Fifth, one may equally well 
consider systems by allowing matrix-valued symbols. Sixth, if these notions 
are intrinsic then the class of operators should be invariant under diffeomor-
phism, the effect on symbols should be calculable, and thus there should be a 
theory on manifolds. 

The theory just described in outline might appear to be little more than an 
elegant way of rederiving elliptic regularity results by a modern version of the 
parametrix method of Levi (1909), but introducing nonpolynomial symbols 
allows a surprising amount of flexibility. The increased freedom in dividing 
and factoring symbols allowed Calderón [7] to obtain the first very general 
result on local existence of solutions to equations with variable coefficients 
and was instrumental in the work of Nirenberg and Treves on local solvabil
ity [26]; see also [5]. Having enough symbols to account for the operations 
occurring in ^-theory was necessary for the index theorem [2]. Also, as 
observed by Calderón, general boundary value problems for elliptic operators 
may be reduced to pseudodifferential equations on the boundary. A simple 
example is the oblique derivative problem for the Laplacian: find u harmonic 
in the half plane y > 0 such that 

a(x)^u(x, 0) + b(x)^u(x, 0) = g(x). (4) 

Let v(x) = u(x, 0) and take the Fourier transform in JC; then the problem 
becomes 

ƒ e'**{ia{x)i - b(x)\Z\)v(Z)d'è = g(x). (5) 

Various weakenings of the assumptions on the symbols are possible. One 
does not need an asymptotic expansion in homogeneous parts since the 
composition, boundedness, and invariance results use only the estimates on 
the derivatives. These estimates may be allowed to depend nontrivially on x 
and be nonisotropic: 

\D^{xA)\<Ca^a^xA\ (6) 
For various conditions of this type, see [17], [3], [5], [18], [34]. The correspond
ingly more general classes of operators provide still greater flexibility in 
attacking fundamental questions of linear theory, and contain parametrices of 
nonelliptic operators. 

The discussion so far makes it appear that pseudodifferential operators 
came as a natural outgrowth of general linear PDE theory, specifically of the 
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Fourier transform-L2-C°°-methods of Schwartz, Gârding and others. This 
was almost the case [15], but paradoxically the actual development came 
through a n l ? theory less directly related to PDE. This part of the story 
begins with a boundary value problem even simpler than (4). A function 
harmonic on the upper half plane and suitably small at infinity is determined 
by its boundary value ƒ on R and determines the boundary value g of its 
conjugate harmonic function. Thus ƒ determines g and in fact g is the Hubert 
transform off: 

g(t) - Hf{t) = lim i f (t - sylf(s) ds. (7) 

Now H is a generalized convolution operator whose (distribution) kernel has 
Fourier transform i sgn £. By Plancherel one has the L2 equality \\Hf\\2 — 
||/||2. M. Riesz proved in 1927 that \\Hf\\p <Ap\\f\\p9 \<p<oo. Various 
clever proofs of this result are known, exploiting the complex variable aspects 
of the situation. In 1952 Calderón and Zygmund gave a real variable proof of 
such Lp inequalities which demonstrated that the essential features of the 
kernel k(t, s) = (t — s)~l are first that it have enough cancellation for an L2 

estimate to hold, and second that although k is singular on the diagonal the 
relationship between singularity and smoothness is such that 

f \k(x,y)-k(x9y')\dx<C9 all>>,/. (8) 

This inequality is satisfied by smooth convolution kernels in Rn which are 
homogeneous of degree — n. The Calderón-Zygmund proof uses a general 
interpolation argument and a specific decomposition of an L1 function which 
exploits the measure-theoretic covering properties of cubes or balls in Rn. 

The relationship between singular integral operators and partial differential 
operators is that our operator P can be factored as P0(I — A)r/2 where P0 is a 
singular integral operator of the above type (plus a multiple of the identity). 
Various important estimates follow from this factorization [8], [1], for exam
ple the basic Lp estimate 

2 ||Z>"K||, < CK(\\Pu\\p + \\u\\p), » e Ç , (9) 
\a\<m 

where P is elliptic of order m and K is compact. Moreover, the commutator 
of a singular integral operator and a differential operator of order m is an 
operator of order m — 1, while the commutator of two singular integral 
operators has order — 1. This theory was transplanted to manifolds by Seeley 
[27] and thus came to play its role in the index theorem. The approximate 
commutativity properties just mentioned were essential in the various applica
tions and suggested that a more complete calculus of such operators should 
be possible; it finally blossomed in [22], [28], [35], [16] as the theory of 
pseudodifferential operators in the first version sketched above. 

Roughly speaking, singular integral operators are pseudodif f erential opera
tors of degree zero and conversely, at least before generalization sets in. For 
example the Hilbert transform is the pseudodif f erential operator with symbol 
# sgn | , and in general the symbol is a partial Fourier transform of the kernel. 
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Thus in principle the symbol and kernel may be used interchangeably. In 
practice the viewpoints have diverged. As we have seen, looking at symbols 
and the symbol calculus is natural for the L2 theory and its C00 applications, 
and leads to close analysis of the estimates (6). One generally tries to preserve 
L2 boundedness of zero order operators, ||öw||2 < C||w||2, but the usual 
generalizations have rarely had the corresponding Lp boundedness property. 

For the Lp theory one seems forced to examine the kernel, and the 
Calderón-Zygmund method suggest analysis of the geometry of distinguished 
sets to replace the euclidean balls or cubes used in (8) and in the decomposi
tion of Ll functions. For example the original "elliptic" homogeneity associa
ted to the form £ ,2 + • • • +£* may be replaced by the "parabolic" homo
geneity associated to |{,| + £2 + * * * +£?> [20]> [13], or by other obvious 
generalizations, or by more complicated twisted homogeneities associated to 
Lie groups or to the boundaries of strictly pseudoconvex complex domains 
[23], [14], [11]. 

The reader interested in a fuller account of the history, the applications, or 
the state of the art in singular integral and pseudodifferential operators 
should see [3], [4], [8], [17], [18], [25], [29], [30]-[33], [36], and the references 
therein, or the forthcoming books by M. Taylor and by F. Treves. We have 
slighted various developments and viewpoints in this brief survey, including 
the Banach algebra approach [12], the analytic case [6], and the Heisenberg 
view [19]. 

Nagel and Stein [24] achieved a significant synthesis of the kernel-geomet
ric and the symbol-estimate viewpoints. They considered families of second 
order hypoelliptic differential operators which include the following (w.R2): 

D\ + Z>2
2, iDl + Z>2

2, iDx + xxD}9 D2 + x\D\ (10) 

or any Hörmander operator *2X2 + Y where the Xj and Y are vector fields 
and they and the commutators [XJ9 Xk] span the tangent space at each point. 
To each such operator P they associate a class of pseudodifferential operators 
defined by estimates like (6), which amounts to a geometry on the cotangent 
bundle of Rn

9 and a dual geometry in Rn itself defined by a pseudometric 
and therefore having a family of distinguished neighborhoods. The latter 
geometry is suited to a version of the singular integral theory [11]; the 
pseudodifferential operators of order zero are admissible singular integral 
operators, while the parametrix of the operator P is an admissible pseudodif
ferential operator. Thus one obtains not only the known l? estimates for P 
but the corresponding Lp estimates analogous to (9), and in the process one 
achieves a grasp of the singularities of the corresponding kernels and the 
naturally associated geometry. (A related but somewhat different synthesis is 
given in [4].) 

The monograph which is the excuse for this long discussion is a clear and 
unhurried presentation of the authors* viewpoint and methodology in the 
work just described. It is not a comprehensive treatise or general introduction 
to pseudodifferential operators, but a guided tour which starts from basic 
knowledge of real analysis and Fourier analysis, and spirals upward to a view 
of the theory at work on a new frontier. The introduction maps the way fully 
in advance. A discussion of homogeneous distributions in Rn and on homo-
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geneous (nilpotent Lie) groups follows. There is a brief general discussion of 
pseudodif f erential operators, followed by the introduction of the author's new 
classes and a sketch of the basic Lp boundedness result. General Sobolev and 
Lipschitz spaces are introduced and corresponding mapping theorems ob
tained. The class of operators is shown to be closed under composition and to 
behave as expected under diffeomorphisms. Finally, the theory is applied to 
the boundary Laplacian Q,, to the general oblique derivative problem, and to 
general versions of the examples (10). Throughout, the exposition is as 
pleasant as the sometimes very technical nature of the material will allow; 
only the repeated idiosyncratic spelling of "parametrices" is an irritant. 
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Bedienungsprozesse, by Gennadi P. Klimow, translated from the Russian by 
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Queues or waiting lines are among the richest sources of problems and 
examples in the theory of stochastic processes. The simplest queues serve well 
to illustrate the basic theory of Markov chains. The service systems, which are 
of research interest today, involve complex interactions of queues and are 
described in terms of typically multi-dimensional stochastic processes. Such 
descriptions hold, only if we are able to formalize the processes at all. 
Realistic queueing systems are formidable dynamic-stochastic systems indeed. 

From isolated but distinguished contributions by Felix Pollaczek and A. 
Ya. Khinchin in the thirties and forties, the theory of queues emerged as a 
subdiscipline of probability theory during the years 1950-1960. Its growth 
since then has truly been astounding. I usually place the number of journal 
articles on queues at 7500 and know of some fifty books fully devoted to this 
subject. Both numbers probably underestimate the actual size of the litera
ture. By those studying the job flows in telecommunication and manufactur
ing systems or inside computers or computer networks, the relevance of 
understanding the behavior of queues is taken for granted. In spite of this, 


