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BOOK REVIEWS 

Hilbert's fourth problem, by A. V. Pogorelov, Wiley, New York; Holt, Rine-
hart and Winston, New York, 1979, vi + 97 pp., $16.00. 

Hubert's Problem 4 stripped of its comments1 is this: Omit from his axioms 
for the foundations of geometry besides the parallel axioms all those which 
contain the concept of angle, and replace them by the triangle inequality, 
which follows from the congruence axiom for triangles (CT). 

(1) Determine all geometries satisfying these conditions. 
(2) Study the individual ones. 
This is not quite Hubert's formulation because with respect to angles he 

only omits the CT. The remaining angle axioms have no significant applica­
tions without CT. Pogorelov uses the preferable form given above. 

Only two such geometries, besides the elementary ones, were known at the 
time, the Minkowskian satisfying the euclidean parallel axiom and Hubert's 
geometry generalizing in a similar way the hyperbolic situation. It seems that 
Hubert did not think of a mixed situation like a half plane. 

Nor is it clear, whether he wanted to include nonsymmetric (n.s.) distances 
(a Minkowski metric may be symmetric or not). Hubert was admittedly 
probing and considered, in fact, an analysis of the distance concept as one of 
the tasks connected with the problem. Since absence of symmetry violates one 
of the axioms Pogorelev does not admit n.s. distances. 

That Hubert was interested in them is evident from Hamel's thesis [2], 
which he directed immediately after his lecture. It dwells largely on n.s. 
distances. They were deemphasized in the later version [3] of [2], most 
probably because from the great variety of Desarguesian metrics (both 
symmetric and not) which Hamel exhibited, no appealing new one emerged. 
The situation changed in 1929, when Funk discovered a very interesting, 
always n.s. geometry which resembles euclidean geometry in some respects 
and hyperbolic in others. In addition it led to the proper definition of 
completeness: The balls {x\px < p} are compact, but not necessarily the 
{x\xp < p), where xy is the distance. 

Hamel approached the problem through the Weierstrass Theory of the 
calculus of variations, which requires smoothness properties alien to the 
foundations of geometry, the framework visualized by Hubert for the prob­
lem. This is less surprizing than it appears because Hubert was very interested 

1 These are translated in Hilberfs mathematical problems 8 (1902) of this Bulletin. The 
translation is reprinted in [1], a report on the symposium on Hilberfs Problems held in 1974. 
Problem 4 appears there on pp. 131-141 with the title Desarguesian spaces. Hubert's heading, 
slightly modernized, is: The geometries in which the ordinary lines provide the shortest connections. 
We refer the reader to the article in [1] for all facts concerning Problem 4 omitted here, because 
they are not connected to Pogorelev's book. 

87 



88 BOOK REVIEWS 

in the Weierstrass Theory at the time; in fact, he contributed his important 
invariant integral in his comments to Problem 23. 

The discovery of the great variety of solutions showed that part (2) of 
Problem 4 is not feasible. It is therefore no longer considered as part of the 
problem. But many interesting special cases have been studied since 1929. 

[2] remains to this day the only attack on the n.s. case. Therefore I only 
give the modern version of Problem 4 for symmetric distances. The length of 
a curve in a metric space is defined in strict analogy to the elementary 
procedure. The Desarguesian spaces R are given by the following conditions. 

(1) R is a nonempty open subset of the real projective space Pn metrized by a 
distance xy (providing the correct topology) such that 

(2) The balls {x\px < p} are compact (or the Bolzano-Weierstrass Theorem 
holds). 

(3) Any two distinct points x,y can be connected by a segment, i.e. a curve of 
length xy. 

(4) xy + yz > xz when x9y, z are not col linear in Pn. 

In the spirit of the time Hilbert restricted himself to n = 2, 3 and so does 
Pogorelev. However, this has doubtless pedagogical reasons, because he 
addresses a wide class of readers. The real difference is between n = 2 and 
n > 2. Pogorelev's method works for n > 3, but requires greater technicali­
ties. For the same reason he assumes that R is either all of P2,3 or all of the 
affine A2,3 or a convex subset of A2'3, although Hamel proved in [3] that R 
must have one of these forms (this holds actually for all n and even n.s. 
distances). The proof becomes simple by using covering spaces, which 
Pogorelev avoids. Thus he accomplishes more than appears at first sight. 

I will explain in some detail his principal contribution, because for my 
report in [1] the Russian book (price: 24 kopeks) was not yet at my disposal. 

Led by integral geometry I had observed (references are found in the 
translation) that many Desarguesian spaces can be obtained as follows, 
taking R = Pn as an example. Denote hyperplanes by H9 and for a point set 
M put HM = {H\H n M ^ 0 } . Define on the set of all hyperplanes a 
nonnegative measure e with (a) e(H^p)) = 0 for each point p9 (b) e(HM) > 0 
when M ¥= 0 is open, (c) e(Hpn) = 2k < oo. Notice that e(HL) = 2k for any 
line L because HL = Hpn. Two distinct points JC, y divide the line L through 
them into two arcs Ax, A2 and e(HA) + e(HAJ = e(HL) = 2k because of (a), 
so that at least one Ai9 say Al9 satisfies e(HA ) < k. Putting xy = e(HA ) 
defines a Desarguesian metrization of Pn with A, as segment. 

Without essential changes this construction can be used when R c A n by 
admitting the value oo for e(HM). 

Pogorelev proves that in detail. Now the question arises whether this 
method yields all Desarguesian metrics. The answer is affirmative for n — 2, 
but n > 2 requires measures 8, which may take negative values on many sets. 
Unexpectedly, this proves compatible with 8(HT) > 0 for every segment T. I 
had noticed this situation previously in the very special case of the 
Minkowskian geometries. 

We denote a metric given by a 8 with 8(HT) > 0 as a ô-metric. The 
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construction of 8 (or e for n = 2) for a given Desarguesian metric is Pogorelev9s 
prime contribution. 

He shows first that every ô-metric can be approximated, uniformly on 
every compact set, with Desarguesian metrics derived from integrands 
F(x, dx) satisfying the standard conditions of the calculus of variations 
(n = 2, 3). 

In cartesian coordinates the euclidean densities deL, deH (i.e. He(M) = 
SHC\M=£0 deH) f° r a l m e L in P2 or a, plane H in normal form x • u — p = 0, 
is deL = dudp, deH = dudp (u is a unit vector normal to L, resp. H, and/? the 
distance from the origin). It is clear that in the general case the densities must 
have the form y(L)deL or y(H)deH. Thus the problem becomes finding y in 
terms of F(x, dx). 

By an ingenious use of a special form which the Euler equations take when 
the straight lines are the extremals, this task is reduced to Funk's problem of 
representing the supporting function G(y) of a convex body K with the origin 
as center in the form G(y) = fv y(u)\y • u\du with even y(u). The problem is 
easily solved with y(w) > 0 for n = 2, but is far from trivial for n = 3 and 
y(u) may take negative values.2 

The solution is applied for each x to F(x, x) with y = x in x-space. F(x, y) 
is, in fact, because of F(x9 kx) = |A:|iF(x, x) and the Legendre condition, the 
supporting function of a convex body with the origin as center in >>-space. 
This defines y(w, x • u) and dH = y(u, xu)dpdu. 

The final answer for 8(n = 3) is expressed in terms of the measure 8'(Q') 
of the point set Q' obtained by a correlation from a set Q of planes where 
8'(Q') — 8(Q). The conditions are 8'(P) = Ofor every plane P (corresponding 
to (a)), 8'(C) > Ofor every cone C and 8'(C) > 0 when C has interior points. 

The very well written book begins with an introduction to the most 
elementary facts concerning P2'3 whose points are defined as equivalence 
classes of triples, resp. quadruples of reals. It then gives topologies for the 
lines and planes. The detailed exposition of the results sketched above 
follows. Finally the tract turns to the foundations of geometry (with Pogore-
lev's own variation of Hilbert's axioms) where it is clearly undesirable to take 
the analytic definition of P2,3 for granted. The special geometries of Minkow­
ski and Hubert are discussed. As all this is rather known territory, I will not 
dwell on it. 

The blurb on the cover states that the book is accessible to advanced 
undergraduates. This seems unlikely if for no other reason than the breadth 
of knowledge which is taken for granted and is certainly so in the Russian 
original, which provides practically no references. The excellent translation 
by R. A. Silverman contains a good list of these, for all knowledge assumed, 
and a very judicious four pages of notes, both contributed by E. Zaustinsky, 
which will greatly help the reader (not only students) to locate the material, 

2For readers familiar with the theory of convex bodies I mention that y(u) > 0 means that K is 
a projection body, so that the Ô-metric is an e-metric, when F(xyy) supports for each fixed x a 
projection body in >>-space (see below). It is trivial that a two-dimensional K is always a 
projection body, so that y is easy to find, but f or n > 2 projection bodies are very special cases. 
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and beyond this explains at crucial points the reasons for certain steps which 
could baffle a newcomer to the field. 
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Transformation groups and representation theory, by Tammo torn Dieck, Lec­
ture Notes in Math., vol. 766, Springer-Verlag, Berlin and New York, 1979, 
viii + 300 pp., $18.00. 

Let G be a topological group and X a topological space. An action of G on 
X is a continuous map G X X —» X, written ( g, x) -> gx on elements, such 
that lx = x and g(gfx) = {ggf)x. The study of such group actions is a major 
and growing branch of topology. 

Probably the longest established aspect of this study concerns smooth 
actions of compact Lie groups on differentiable manifolds. Typically, one 
tries to classify such actions on a given manifold or to construct particularly 
nice or particularly pathological examples. A recent concern, still very much 
in its infancy, is the analysis of the algebraic topology of G-spaces. This book 
is largely concerned with aspects of this new subject of equivariant homotopy 
theory. 

While some formal theory goes through more generally, it is widely 
accepted that the appropriate level of generality is to restrict attention to 
compact Lie groups. Here there is a dichotomy. Many parts of the theory 
become very much simpler when one restricts further to finite groups, but one 
feels that one really doesn't understand the theory unless one can carry it out 
for all compact Lie groups. 

The major computable invariants of algebraic topology are "stable". That 
is, with a shift of indexing, they are the same for a based space X and for its 
suspensions ??X = X /\ Sn. Here the smash product X /\ Y is the quotient 
of A" X y by the wedge, or 1-point union, X V Y. In equivariant algebraic 
topology, this description will not do. It makes little sense to restrict attention 
to spheres with trivial G-action. Since it would be unmanageable to allow 
spheres with arbitrary G-action, it is best to understand G-spheres to be 
1-point compactifications SV of representations V. Here F is a finite-dimen­
sional real inner product space with G acting through isometries. With 
basepoints fixed under the action of G, "stable" invariants of based G-spaces 
should be the same for X and for *2VX = X /\ SV, where G acts diagonally 


