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RESEARCH ANNOUNCEMENTS 

THE TETRAGONAL CONSTRUCTION 
BY RON DONAGI1 

1. Preliminaries. Let C be a nonsingular curve of genus g, and n: C —* C 
an unramified double cover. The Prym variety P(C, C) is by definition ker°(iVm), 
where Nm: J(C) —• J(C) is the norm map, and ker° is the connected compo
nent of 0 in the kernel. By [M] this is a (g - l)-dimensional, principally polar
ized abelian variety. Let A^, M ,̂ R^ denote, respectively, the moduli spaces of 
g-dimensional principally polarized abelian varieties, curves of genus g, and pairs 
(C, C) as above. (R .̂ is a (22g - l)-sheeted cover of M .̂) The Prym map is the 
morphism 

P = ?g: Rg ~+ A *- i> (C> ^) ^ ?(C> ^>' 

It is analogous to the Jacobi map J = Jg: Mg —* Â . sending a curve to its 
Jacobian. The main reason for studying P is that its image in R^_1 is larger 
than that of J, hence it allows us to handle geometrically a wider class of abe
lian varieties than just Jacobians. For instance, Pg is dominant for g < 6 [W] 
while Jg is only dominant for g < 3. 

The purpose of this announcement is to describe the fibers of P in the 
various genera. Our main tool for this is a simple-minded construction which we 
describe in some detail in paragraph 6. Let us use "w-gonal" (trigonal, tetra
gonal, etc.) to describe a pair (C, ƒ) where f: C —• P1 is a branched cover of 
degree « ( 3 , 4 respectively). Briefly, our construction takes the data (C, C, ƒ) 
where (C, C) G R and (C, ƒ ) is tetragonal, and returns two new sets of data, 
(C0, C0, / 0 ) and (C«, Cu ƒ,), of the same type. This procedure is symmetric: 
starting with (C0, C0, / 0 ) we end up with (C, C, ƒ) and (Cx, C p / x ) . It is use
ful due to the following observation. 

PROPOSITION 1.1. The tetragonal construction commutes with the Prym 
map: 

PiQQKPiCo.Co)**?^,^). 
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REMARK 1.2. A similar construction was studied by Recillas [R], [DS, 
III]. He starts with a tetragonal pair (C, ƒ ) and produces a triplet (X, X, g) 
where (X, g) is trigonal and ?(X, X) » 3(C). This becomes the special case of 
our construction where C is taken to be the split double cover of C. The re
sulting C0, Cx are then isomorphic to X with a P1 attached (in two different 
ways) and 

P(Ci9 C,) « P(X, X) « J ( 0 « P(C, Q. 

2. Genus 6. In [DS] the map P: R6 —• A5 was studied at length. The 
main result was that this map is generically finite, of degree 27. 

THEOREM 2.1. The fibers of P : R6 —• A5 have a structure equivalent to 
the intersection-configuration of the 27 lines on a cubic surface. 

An equivalent formulation is 

COROLLARY 2.2. The Galois group of the field extension K(A5) C K(R6) 
is the Weyl group W(E6). (Compare [Ma, Theorem 23.9]). 

The theorem limits severely the possible degenerations in a fiber of P. 
For instance 

COROLLARY 2.3. The ramification locus (in R6) is mapped six-to-one to 
the branch locus (in A5). 

PROOF. A line on a cubic surface S counts twice if and only if it passes 
through a double point of 5. Through such a point there are six lines, n 

The proof of the theorem depends on the existence of 5 tetragonal maps, 
f{ (1 < i < 5) on a generic curve C of genus 6. To each triplet (C, C, f() the 
tetragonal construction associates two others; the ten resulting points of 
P""1 V(C, C) are the ones "incident" to (C, C). 

The same method allows us to recover the main result of [DS] rather pain
lessly: we show that starting with (C, C) G R6, choosing a tetragonal ƒ, apply
ing the tetragonal construction to get (C0, C0, / 0 ) , changing the tetragonal 
fQ to an f~ and repeating the process indefinitely, leads to precisely 27 distinct 
objects: to the original (C, C) are added ten after the first cycle, and only six
teen more after the second cycle. (I.e. each of the five first-generation pairs 
yields the same set of sixteen second-generation objects!) Therefore deg(P) is a 
multiple of 27. This possible multiplicity is eliminated by checking a degenerate 
case, where C is a double cover (branched) of an elliptic curve ("elliptic hyper-
elliptic"). 

3. Genus 5. The map P5 : R5 —• A4 turns out, surprisingly, to be more 
intricate than its higher-genus cousin P6 , and until now has eluded description. 
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By dimension count, the generic fiber is 2 dimensional; we show that in fact it 
is a double cover of a Fano surface. 

THEOREM 3.1. There is a birational isomorphism K: A4 —y C where C is 
a parameter-space for pairs (X, JU) consisting of (the isomorphism class of) a 
cubic threefold X together with an "even" point of order two in its intermediate 
Jacobian. 

PROPOSITION 3.2. There is a natural involution X: R* —• Rr such that 
X(C, C) is related to (C, C) by a succession of two tetragonal constructions; 
hence P ° X = P. 

THEOREM 3.3. For generic A G A4, the quotient P~l(A)/\ is isomorphic 
to ¥(K(A))9 the Fano surface of lines on the cubic threefold K(A) 

The proofs seem to depend heavily on the results for genus 6 and their 
various specializations. As a corollary, we have an explicit parametrization of the 
family of (rational equivalence classes of) effective symmetric representatives of 
the class [0] 3/3 in H2(A, Z). This is twice the class of a curve in its Jacobian, 
and the smallest class which is effective on generic A. 

4. Prym-Torelli. For g < 4 the analysis of V is fairly easy. It can be 
done using nothing but Reculas' trigonal construction (1.2), since any A G Ag_1 

is Jacobian of a tetragonal curve. In the remaining cases g> 7, P "ought" to 
be injective by dimension count. After some inconclusive work of Tjurin [T], 
counterexamples to this expected Prym-Torelli theorem were exhibited by Beau-
ville [B2] for g < 10, using Recillas' construction applied to curves which are 
tetragonal in two distinct ways. Using the tetragonal construction we exhibit 
counterexamples for all g. Without much justification we make the following 

CONJECTURE 4.1. If ?(C, C) « ?(C, C') then (C', C') is obtained from 
(C, C) by successive applications of the tetragonal construction. In particular, 
C and C' are tetragonal curves. 

5. Andreotti-Mayer varieties. In [AM], Andreotti and Mayer studied the 
Schottky problem of characterizing Jacobians among abelian varieties. Call A G 
A^ an A - M variety if its theta divisor 6 has a (g - 4)-dimensional singular locus, 
and let NL C A^ be the closure of the locus of A - M varieties. The main results 
of [AM] are that Hg can be explicitly described by equations, and that J(M„) is 
an irreducible component of Ug. Perhaps the most spectacular application of 
Prym theory was Beauville's refinement of their results [Bl]. He obtained a 
complete (and lengthy) list of all possible components of P" l (hlg), hence, in 
principle, a description of W4, W5 (since P5, P6 are surjective, when appropriately 
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compactifîed). In particular, he showed that W4 has only one irreducible compo
nent other than J(M4). 

Using the tetragonal construction, some remarkable coincidences appear in 
Beauville's list. In fact 

THEOREM 5.1. (1) W4 consists of J 4 and another nine-dimensional irre
ducible component [Bl]. 

(2) W5 consists of J5 and four irreducible, nine-dimensional loci; three of 
these parametrize Pryms of elliptic-hyperelliptic curves, and the fourth consists 
of certain abelian varieties isogenous to a product with an elliptic curve. 

(3) For g > 6, Ng n P(Rg+l) consists of Jg, 2 components of Pryms of 
elliptic-hyperelliptic curves (each (2g - 1) dimensional) and [(g - 2)/2] compo
nents of Pryms of reducible curves C = Cx UC 2 , #{C1 O C2) = 4 (each (3g - 4) 
dimensional). 

COROLLARY 5.2. Any (C, C) G P~l(Ng) is either tetragonal (or a degen
eration of tetragonals) or reducible. The modified Prym-Torelli Conjecture 4.1 
holds over Ng. 

CONJECTURE 5.3. hlg C P(R^+1), hence hlg consists only of the compo
nents listed above. 

The proof might imitate Andreotti's proof of Torelli's theorem and resurrect 
Tjurin's work [T] : Given A G W there should be some explicit geometric con
struction yielding a family of doubly covered tetragonal (or reducible) curves, 
whose Prym is A. 

COROLLARY 5.4. For any canonical curve C C P^~l, the system of 
quadrics containing C is spanned by quadrics of rank 4. 

PROOF. A refinement of [AM] shows that the truth of the corollary for a 
given C depends only on the structure of Hg near J(C); in particular the corollary 
holds if Jg is the only component of N containing J(C). By Conjecture 5.3 
and Theorem 5.1, this holds for all C except for hyperelliptics and elliptic-hyper-
elliptics. A special argument works for these. 

6. The construction. We sketch the tetragonal construction. Start with 
an unramified double cover IT: C —> C and tetragonal map ƒ: C —> P1. Let 

/ » : / * ( 0 — P1 

be the "pushforward" of IT: C —> C via ƒ. This is a (16 = 24>sheeted branched 
cover. Over p G P1, its 16 points correspond to the 16 ways of lifting the quad
ruple f~l(p) C C to a quadruple in C. This suggests a convenient way of realiz
ing fJiÇ) as a curve in Pic(4)(C), the Picard variety of line bundles of degree 4: 
fJC) is the subvariety parametrizing those effective divisors in C whose norm 
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(under n: C —> C) is in the 1-dimensional linear series determined on C by ƒ. 
Note that on the curve fJC) there is a natural involution r: fJC) —• 

/1(C). r sends a lifting of f~~ (p) to the complementary lifting, obtained by in-
terchanging the sheets of n: C —• C (This is induced by the automorphism of 
Pic4(C) sending a line bundle L to L~l <8> (f ° TT)*Ö ^ l ) . ) Let C be the quo
tient /^(Q/r, an 8-sheeted cover of P1. 

LEMMA. C is reducible: C = C0 U C,, eflcft C, M A 4-sheeted branched 
cover Ö/ P1. Correspondingly, fJC) = C 0 U C P wftere C, is flctai wpwi fty r 
w/tfi quotient Ct. 

PROOF. Define an equivalence relation ~ on fJ(C): Dx ~ D2 if f+(iO(P\) 
= fJjt)(D2) and Z>p D2 have an even number of points (0, 2 or 4) in common. 
The quotient fJC)/~ is a 2-sheeted branched cover of P1. Clearly it can be 
branched only where ƒ: C —• P1 is; but a simple monodromy check shows that 
at such a point fJ£)/~ is locally reducible. (I.e. in going around a branch point, 
an even number of points of C are exchanged.) Hence the normalization of 
fJC)/~ is nowhere ramified over P1, hence consists of two disjoint copies, so 
/^(C) itself is reducible. Finally, r acts on each component separately since it 
changes an even number (all 4) of the points. Q.E.D. 

Note. Identifying Pic4(C) « Jac(C), we have that /„.(C) is contained in the 
kernel of the norm-homomorphism, which [M] consists of two copies of the Prym 
variety; Ct are the intersections with these two components. 
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