ON A CONJECTURE OF PAPAKYRIAKOPOULOS

BY SIEGFRIED MORAN

ABSTRACT. We disprove a conjecture of Swarup which in turn disproves a well-known conjecture of Papakyriakopoulos that a certain cover is planar.

Let

$$K_n = \langle a_1, b_1, \dots, a_n, b_n; \prod_{i=1}^n (a_i, b_i) \rangle$$

and

$$J_n = \langle a_1, b_1, \dots, a_n, b_n; \prod_{i=1}^n (a_i, b_i), (a_1, b_1\tau) \rangle,$$

where n is a fixed integer ≥ 2 and τ is an element of the commutator subgroup of the free group $F(\{a_1, b_1, \ldots, a_n, b_n\})$. Further let S_n be the orientable closed surface of genus n. The fundamental group of S_n is K_n . Papakyriakopoulos [3] put forward the following

- P.1. Conjecture. (a) J_n is torsion free and
- (b) the cover of S_n corresponding to the kernel of the natural group homomorphism $K_n \longrightarrow J_n$ is planar.

Papakyriakopoulos [3] showed that if P.1. is true, then so is the Poincaré Conjecture.

- G. A. Swarup [5] has posed the following
- P.2. Conjecture. The group J_n is a nontrivial free product.
- G. A. Swarup [5] showed that

THEOREM. The conjecture P.2. is not in general true. Hence the conjecture P.1. is not in general true.

PROOF. Let $G_1 = \langle a_1, b_1; (a_1, b_1c) \rangle$, where c is any fixed element of the commutator subgroup $F(\{a_1, b_1\})'$ of the free group $F(\{a_1, b_1\})$ so that (a_1, b_1c) is not conjugate to $(a_1, b_1)^{\pm 1}$ in $F(\{a_1, b_1\})$. For example one could take

$$c = (a_1, b_1).$$

Received by the editors July 9, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57M40; Secondary 20E06.

Take

$$G_2 = \langle a_2, b_2, \ldots, a_n, b_n; - \rangle$$

and $G = G_1 *_H G_2$, where $H = \langle h; - \rangle$ and the amalgamating isomorphisms are given by

$$\varphi_1(h) = (a_1, b_1)$$
 and $\varphi_2(h) = (a_n, b_n)^{-1} \cdot \cdot \cdot (a_2, b_2)^{-1}$.

Now G is an example of a group of the type denoted by J_n above. This is so since G_1 is torsion free by Magnus, Karrass and Solitar [2, §4.4, Theorem 4.12]. Also $(a_1, b_1) \neq e$ in G_1 , because of the assumption on c and Magnus, Karrass and Solitar [2, §4.4, Theorem 4.11]. We show below that G cannot be decomposed into a proper free product.

Suppose that contrary to the above assertion we have that G = X * Y, where X and Y are nontrivial groups. The rank of G is 2n, since G/G' is a free abelian group of rank 2n. The rank of G_1 is 2 and the group G_1 is torsion free by Magnus, Karrass and Solitar [2, §4.4, Theorem 4.12]. Hence if G_1 is a proper free product, then G_1 is a free group of rank 2, by Theorem of B. H. Neumann on the rank of a free product (see for instance Magnus, Karrass and Solitar [2, §4.1, p. 192]. However the group G_1 is (by definition) clearly not a free group. So G_1 cannot be decomposed into a proper free product. Hence, by the Kuroš Subgroup Theorem for a free product, it follows that

(*)
$$G_1 \subset g^{-1}Xg$$
 for some element g of G .

Hence

$$G/\overline{G}_1^G \cong (X/g\overline{G_1g^{-1}}^X) * Y.$$

Also

$$G/\overline{G}_1^G\cong G_2/\overline{\langle \varphi_2(h) \rangle}^{G_2}$$
 is a surface group,

since G has generators a_1 , b_1 , a_2 , b_2 , ..., a_n , b_n and defining relations

$$\prod_{i=1}^{n} (a_i, b_i) = e \text{ and } (a_1, b_1 c) = e.$$

Now a result of A. Shenitzer (see Proposition 5.14 of Lyndon and Schupp [1, Chapter II]) tells us that G/\overline{G}_1^G cannot be both a surface group and a proper free product. Hence

$$X = \overline{gG_1g^{-1}}^X$$
 and $Y \cong G_2/\overline{\langle \varphi_2(h) \rangle}^{G_2}$.

Thus the rank of Y is $2n-2 \ge 2$.

All conjugates of Y intersect the subgroup H (of G) trivially. For

$$X \cap \overline{Y}^G = e$$
 and $X = \overline{gG_1g^{-1}}^X \supseteq gHg^{-1}$.

Hence, by the Subgroup Theorem of H. Neumann for free products with amalgamation (see for instance Lyndon and Schupp [1, Chapter IV, Theorem 6.6]), the group Y is either a proper free product or is contained in some conjugate of one of the groups G_1 and G_2 . None of these possibilities can in fact occur.

- (i) Y cannot be a proper free product, by the above-mentioned result of A. Shenitzer, since it is a surface group.
- (ii) Y cannot be contained in a conjugate of G_1 , since this would imply by (*) that Y is conjugate to a subgroup of X.
- (iii) Y cannot be contained in a conjugate of G_2 , since if it were Y would be a free group (as G_2 is a free group) which is false (a surface group is not a free group).

REMARK. As is well-known E. S. Rapaport [4] established Conjecture P.1. (a). Hence we have shown that Conjecture P.1. (b) does not in general hold.

REFERENCES

- 1. R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer, Berlin, 1977.
- 2. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- 3. C. D. Papakyriakopoulos, A reduction of Poincaré conjecture to group-theoretical conjectures, Ann. of Math. (2) 77 (1963), 250-305.
- 4. E. S. Rapaport, *Proof of a conjecture of Papakyriakopoulos*, Ann. of Math. (2) 79 (1964), 506-513.
- 5. G. A. Swarup, Two reductions of the Poincaré conjecture, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 774-777.

THE UNIVERSITY, CANTERBURY, KENT, ENGLAND