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THE NEUMANN PROBLEM ON LIPSCHITZ DOMAINS 

BY DAVID S. JERISON AND CARLOS E. KENIG1 

Let D be a Lipschitz domain in R", n > 2. Let o denote surface measure 
on 3A and let b/bn denote the normal derivative on bD. In this note we use an 
a priori estimate due to Payne and Weinberger [6], to bound the nontangential 
maximal function of the gradient sju of a (generalized) solution to the Neumann 
problem 

Au = 0 in D; —u = g on bD (1) 

for boundary data# in L2(do). A corollary is that Vu attains its boundary values 
nontangentially pointwise almost everywhere and through dominated convergence 
in L2 on level sets that tend to bD. Moreover, u belongs to the Sobolev space 
H3,2(D). We obtain the same bound and corollary when u is the solution to the 
Dirichlet problem 

Au — 0 in D; u = ƒ on bD9 

where ƒ and its gradient on 3D belong to L2(do). For C1 domains, these esti­
mates were obtained by A. P. Calderón et al. [1]. For dimension 2, see (d) be­
low. 

In [4] and [5] we found an elementary integral formula (7) and used it 
to prove a theorem of Dahlberg (Theorem 1) on Lipschitz domains. Unknown 
to us, this formula had already been discovered long ago by Payne and Weinber­
ger and applied to the Dirichlet problem in smooth domains. Moreover, they 
used a second formula (2), which is a variant of a formula due to F. Rellich [7], 
to study the Neumann problem in smooth domains. We show here that the 
same strategy as in [4] applied to the second formula (2) coupled with Dahlberg's 
theorem yields our main result. Thus integral formulas give appropriate estimates 
for the solution of not only the Dirichlet problem, but also the Neumann prob­
lem on Lipschitz domains. We will present a more general version that applies 
to variable coefficient operators, systems, and other elliptic problems in a later 
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article. We would like to thank Professor H. F. Weinberger for calling his work 
to our attention. 

The nontangential maximal function M(u) of a function u on D is defined 
for Q e bD by 

M(u)(Q) = sup {|u(P)\ ; P G D, \P - Q\ < 2 dist(P, bD)}. 

THEOREM 1 (DAHLBERG [2] ; SEE ALSO [4]). IffEL2(do), then there 
is a unique harmonic function u in D such that 

W(u)\\ ,2 <C|I/M 
L (do) L*(do) 

and u(P) —-> f(Q) as P —+ Q nontangentially for almost every Q, do. (The con­
stant C depends only on the Lipschitz constant ofD.) 

For simplicity we will only consider star-shaped Lipschitz domains. Let 
y(d) be a positive Lipschitz function on the unit sphere Sn~lC R". 

D = {(r, d):0<r<y(d)}. 

THEOREM 2. Let g G L2(do)\ fdDg do = 0. Then there exists a unique 
function u such that 

(a) Au = 0 in D\ bu/bn = g on bD (in the generalized sense); fbDu do = 0. 

(b) IIAf(VfOII 2 <C\\g\\ 2 . 
L2(do) L2(da) 

COROLLARY. bu(P)jbxj tends to a limit bu(Q)/bXj G L2(do) asP —+ Q 
nontangentially a.e. Q and NQ • Vw(0 = g(Q), where NQ is the normal to bD 
atQ. 

PROOF. Let £1 be a smooth domain. Denote the outer unit normal to 812 
at Q by NQ and surface measure on bSl by ds. Let <, > denote inner product. 
The normal derivative on b£l is b/bv = <NQi V>. Denote a(Q) = Q-(Q, NQ)NQ 

and define a tangential gradient by 

v , = « r 1 , v>,. . . , c r w _ 1 , v » 
where NQ, Tt, . . . , Tn__x form an orthonormal basis at Q. Then [6, 3.7 and 
3.8] 

/aJ(^'2-(l)2)<0>^> (2) 

- 2<a(0, V«> | ^ - (« - 2)H | J ds ( 0 = 0 

for any function u that is harmonic in ÇL and smooth in fl. To prove this, 
observe that 

div{|Vw|2ö ~ 2<Ö, Vw>Vw - (n - 2)uSju] = -2(Q, Vu)Au - (n - 2)uAu = 0. 
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By Green's theorem, 

/an{ |VW|2<0' NQ) ~ 2<0, VW> S " (" " 2)U ^} ds(Q) = °' (3) 

Formula (2) follows from (3) and the fact that |Vt/|2 = \bu/bv\2 + | V / / | 2 . 
Suppose that 12 is star-shaped: 12 = {(r, 0): 0 < r < \I/(0)} for some 

V e C 0 0 ^ " 1 ) . The crucial fact is that <Q, NQ) > c > 0 where c depends only 
on the Lipschitz norm of ^ , l l^ l lL i p . Therefore, we conclude from (2) that 

' L2(ds) 

\bu\ 
\bv\ \L2(ds)\ 

bu 
bv\ + |V ,K | + \u\ 

\L2(ds) 
(4) 

where the constant C depends only on l l^l lL i p . It is well known that if 

fdto u(Q)do(Q) = 0, then IMIL2 (c f5)
 < C^*uK2(ds) f o r a c o n s t a n t C depend-

ing only on ll^llL ip. This combined with (4) yields the a priori estimate of 
Payne and Weinberger [6, §4] : 

IIVKll 
L*(ds) <c\ L2{ds) 

Applying Theorem 1 to each of the partial derivatives bu/bXj we find that 

IIM(Vw)|| 
L*(ds) <c\ L2(ds) (5) 

for a constant C depending only on ll^llLjp. 
Let 12;. = {(r, 0): 0 < r < ^ ( 0 ) } be a sequence of smooth domains con­

taining D. So that ||\fy||Lip < 2 |MI L i p , Vf —• if uniformly, and VeVf —• Vö<£ 
pointwise almost everywhere. We will use the subscript ƒ to transfer notations 
from 12 to 12;.. The Sobolev space HS(D) is defined (for s > 0) as the restriction 
to D of the Sobolev space 

Hs= {he L2(Rn): ƒ |£(?)l2(l + m2)sdt; < <*>}. 

Let ƒ E C°°(R") satisfy fdD(bflbn)do = 0. There is a generalized solution 
u G Hx{p) to the Neumann problem (1) with g = bf/bn. In fact, u = ƒ - u, 
where y satisfies 

f <Vi>, Vi//> = f A/V> for all * e HAD). 
J D J f) 

To specify w uniquely we impose the condition fdD udo = 0. Let h(P) = |P | 2 . 
Note that ^^.{bh/bv^ds^ = 2« vol(127) ¥= 0. Thus, there is a sequence Cj —> 0 
such that 

•fan, fo7 <f+*/*>*/= °-
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Therefore, we can solve the Neumann problem 

f <Vtf„ Vi//> = f A( ƒ + cm for \p G H. (12,) with w, = ƒ + c,/z - v, 

and /aft. w, ds- = 0. Estimate (5) tells us that for large ƒ 

IIM(W.)II 2 <C 
7 L2(dsf) I 

^ t f + * > | . <2C| 
^ ( - . ) - ( 6 ) 

In particular, \\UJ\\H *(£!•) is uniformly bounded. Therefore, replacing u- by a sub­
sequence, we can assume that u. converges weakly in Hr(D) to a function u. 
Furthermore, for \jj G H1, letting 17 = f-H, 

f <VÜ, Vi//> = lim f <VU/, Vi//> 

since l / n ^ V t y , Vi//>l < C/̂ 2/1 V^l2)1/2C/n7-\£>IVi//12)1/2 tends to zero as/ - » ~. 
It is easy to deduce from J a f i • tyfy = 0 that fbDudo = 0. In all, u = w. Be­
cause the functions wy- are harmonic, Vw;- -—• Vw uniformly on compact subsets 
of D. Therefore, using (6), W(VU)\\L2 ^ C^dn^L2(daY T h e c o U e c t i o n 

of functions bf/bn is clearly dense in the space of g G L2(do) with J a D gdo = 0 
and Theorem 2 follows. 

THEOREM 3. Zer u be the solution to the Dirichlet problem au = 0 on Dt 

u=fonbDforfe L2(do). IflJ^L2 (do), then 

llflf(Vtt)ll 2 <C||v,/H 2 . 
L2(rfa) * L2(da) 

PROOF. The proof is similar to that of Theorem 2, with the rôles of bu/bv 
and Vf w reversed. 

REMARKS, (a) Let G be the Green function for D with pole at 0. Apply 
(2) or (3) to G in the domain S2\Be (Be is a ball around 0 of radius e). Letting 
e —• 0 we obtain 

L«* V > ) 2 ^ 0 ) = i /3nlôl2-»f (0)^(0. (7) 
(See [6, 5.6] and [4] for shorter proofs.) 

(b) The area integral estimate [3] says that a solution u from Theorem 2 
or 3 satisfies fD\y2u(X)\2 dist(X, bD)dX < °°. It follows from real interpolation 
thati /e#3 / 2(£>). 

(c) The estimates obtained here show that (2) and (3) are actually valid in 
Lipschitz domains for functions u satisfying Theorem 2 or 3. Moreover, (7) is 
valid on Lipschitz domains. 

(d) The analogous estimates for the Neumann problem in dimension two 
were proved by Fabes and Kenig. They showed that for each Lipschitz domain 
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D C R2, there is p0 > 2 such that if p < p0, g G Lp(do) and Au = 0 on D, 

du/dn = g on dD, then W(^t4)\\LP < ^g^LP(do)' F o r p > p o > t h e e s t i m a t e 

fails. Also, given p > 2, there exists a Lipschitz domain D for which the estimate 
fails. The situation for g G Lp(do), p < 2, in higher dimensions remains open. 
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