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In sharp contrast to Edwards' verbose style, Ribenboim's presentation is 
clear, concise and elegant. The thirteen lectures cover the major events of all 
three eras with a heavy emphasis on the post-Kummer era. The book is a true 
work of art. The lectures are well organized and present the mathematics 
underlying seemingly isolated results in a very cohesive manner. In order to 
avoid too much technical detail, the proofs of the more difficult theorems are 
sometimes only sketched and other times omitted completely. An extensive 
bibliography is given at the end of each section so the reader can easily locate 
sources which cover material missing in the text. Ribenboim also promises a 
second volume which is intended to contain much of the technical develop
ment which was omitted in these thirteen lectures. His first book should 
stimulate interest in and promote a better understanding of the mathematics 
related to Fermat's last theorem. One can only have high expectations for 
Ribenboim's second book on this subject. 
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Can the dimension theory of vector spaces, algebraically closed fields, 
countable torsion Abelian groups (Ulm's Theorem) etc. be generalized to 
provide a means of characterizing the models of an arbitrary first order 
theory? If not, can the obstacle to such an extension be identified and the 
program carried through in its absence? A vector space or an algebraically 
closed field is determined by a single cardinal (the number of independent 
elements); a countable torsion Abelian group is determined by an infinite 
sequence of cardinals. Thus by a generalized dimension theory we mean a 
method of attaching to each model a sequence of cardinals which determine 
it up to isomorphism. The first test of such a generalized dimension theory is 
its ability to solve the spectrum problem: i.e., to count the number of models 
of a theory. In fact, Shelah's answer to these questions arose from the study 
of the following problem. For a first order theory T, let n(T, X) denote the 
number of non-isomorphic models of T with cardinality A. Determine the 
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possible spectrum functions n(T, X). Shelah's book contains the most com
plete available account of the methods for attacking these problems. It shows 
that the non-superstability of a theory T is the obstacle to developing 
dimension for models of that theory. On the one hand, a theory which is not 
superstable has 2" models of cardinality K (for sufficiently large K). On the 
other, he develops a structure theory for models of superstable theories. 

There are two basic model theoretic concepts essential to even a vague 
understanding of the methods of this book: the notion of a formal theory and 
the idea of a type. 

First, for example, consider the formal theory of modules. Fix a ring R. A 
natural language, L, for formalizing the study of modules over R contains a 
constant symbol 0, a function symbol + , for each element of the ring R a 
unary operation symbol fr, and variables ranging over elements of a module. 
The first order sentences of this language are built inductively. The basic 
formulas are equations between polynomials. More complicated expressions 
are built by closing under Boolean operations and under existential and 
universal quantification over elements of the module. A "first order theory of 
modules" is a collection of sentences from L. The module M satisfies (or is a 
model of) the theory T if for each <f> e T, <t> is true in M (written M N <j>). If 
Th(M) denotes the collection of sentences from this language which are true 
in M, then Th(M) is complete in the sense that for every sentence <j>, either </> 
or ~ <j> is in Th(M). If the ring R is uncountable we have a natural example 
of a mathematical theory which is formalized in an uncountable language. 

To orient the reader we give some examples of first order theories of 
modules. For simplicity, we take R = Z and describe some theories of 
Abelian groups. Each of the following classes is the collection of models of a 
first order theory: (i) torsion free Abelian groups, (ii) torsion free divisible 
Abelian groups, (iii) Abelian groups of exponent 3. The first theory is not 
complete; the other two are. In contrast, the collection of torsion Abelian 
groups is not the class of models of a first order theory of modules. 

A type (or element type) describes the relation between a point and a set. 
In algebra, one can describe the relation between a point and a set by 
describing the subalgebra generated by the two. In model theory, because 
there are relations in the language and because the models of an arbitrary 
theory are not closed under substructure, the relationship is more com
plicated. A type over a set A contained in a model of a theory T is a complete 
description of the relation of an element b (generally not in A) to A. 
Formally, t(b; A) = {<t>(x, a): N <(>(&> #)}• The collection of all such types is 
the Stone space of A, denoted S(A). 

The book is more a series of research articles than a text. Much of the 
material has never before appeared in print and all results are proved in the 
greatest possible generality. Much of the material is difficult even for an 
experienced model theorist. In this review we will try to place the book in the 
context of earlier work on the spectrum problem and sketch a few of the 
major ideas while skirting all the technical difficulties. 

The book considers theories in arbitrary first order languages. For simplic
ity of notation in this review T has a countable language unless a remark is 
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formulated in terms of |T| (the number of symbols in the language of T). All 
theories considered will be complete. 

To place the book in context, we will now review briefly the pre-Shelah 
results on the spectrum problem. Since we are dealing with complete theories 
with an infinite model the problem of determining in which finite cardinals 
the theory has a model (often called the spectrum problem) does not arise at 
all. By the Lowenheim-Skolem-Tarski theorem if a theory has an infinite 
model, it has one of every infinite cardinality. The theory T is categorical in 
power X if all models of T with cardinality X are isomorphic. N0-categorical 
theories were nicely characterized in the 1950's [6], Vaught proved in [7] that 
no countable complete theory has exactly two countable models and reported 
Ehrenfeucht's examples of theories with exactly n models for each finite 
n > 2. It is easy to construct theories with exactly N0 and exactly continuum 
many countable models. Vaught conjectured that there are no other possibili
ties for n(T9 N0). This problem remains open although a number of special 
cases have been solved, many of them using the methods of this book. In [3] 
l^os conjectured that in analogy with the theory of algebraically closed fields 
of fixed characteristic or with the theory of torsion-free divisible abelian 
groups, a theory is categorical in one uncountable power just if it is categori
cal in all uncountable powers. M. Morley [4] proved the Los conjecture and 
himself conjectured that for every countable T9 n(T, X) is a non-decreasing 
function of X with one exception: those T9 like the theory of algebraically 
closed fields of fixed characteristic, where n(T9 H0) = N0 and n(T9 X) = 1 for 
uncountable X. This exceptional case was completely investigated by Morley 
[4], [5] who showed that if n(T9 K) = 1 for some uncountable K then n(T9 K) = 
1 for all uncountable K and n(T9 N0) < N0 and Baldwin and Lachlan [1] who 
showed n(T9 Nx) = 1 implies n(T9 KQ) is 1 or N0. 

This book makes considerable progress on Morley's conjecture (and its 
generalization to uncountable languages). The first step is to divide theories 
into those which have the maximal number of models (i.e. 2" if K > \T\) and 
those which don't. Although a characterization of theories along this line is 
not complete in this book, the stability hierarchy provides a good approxima
tion thereto. T is stable in X if for every model, M, of T \M\ < X implies 
|S(M)| < X. T is stable if T is stable in some X. Now Shelah proves that for 
any countable T one of the following holds. 

(i) T is stable in all X (co-stable). 
(ii) T is stable in all X > Exp(2, N0) (superstable). 
(iii) T is stable in X if Exp(A, N0) = X (stable). 
(iv) T is stable in no X (unstable). 
Each of these classes is absolute in the technical set-theoretic sense. For 

example, T is unstable just if there is a formula in T which linearly orders an 
infinite set of «-tuples from some model of T. Figure 1 and the accompanying 
theorem illustrate the relation between these concepts and the spectrum 
problem. Such terms as "multidimensional" will be defined below. 

For simplicity in describing the following results let N̂  > c (the power of 
the continuum). 
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THEOREM. Let T be a countable complete first order theory. 
(i) If T is not superstable then n(T9 K) = 2* for all uncountable K. 
(ii) If T is superstable and multidimensional, n(T, Hp) > 2&. 
(iii) If T is superstable and not multidimensional n(T, K^) < (ft + 
(iv) If T is superstable and unidimensional n(T, K) < 2C for all K. 
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The "non-structure" results are proved in Chapters VII and VIII where 
Shelah establishes that if T is not superstable then T has 2" models of power K 
for each uncountable /c. In spirit, the proof in the special case when T is 
unstable proceeds in the following way. First there are 2* linear orders Ia of 
power K. Since T is unstable, T admits a formula which linearly orders some 
infinite sequence of n-tuples. Build by compactness a model containing a set 
of order indiscernibles (with respect to this formula) of type Ia. Let Ma be the 
Skolem hull of Ia. Now Ia may not be isomorphic to Ifi while Ma is 
isomorphic to M p. Start over, building linear orders sufficiently distinct that 
there are 2" distinct models among the Ma. The flesh requires a detailed 
combinatorial analysis to establish what sufficiently distinct linear orders are 
and that there are enough of them. The superstable case, which appears in 
this book for the first time, is similar in spirit, but even more complicated in 
the flesh. The linear orders must be replaced by trees, the notion of Skolem 
hull of a set of order indiscernibles must be generalized to the notion of a 
Skolem hull of a tree of indiscernibles, etc. These results differ from the 
structure results below as they hold for pseudo-elementary as well as elemen
tary classes. 
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We will now discuss the positive "structure theory". Recall that a basis of a 
vector space can be described as either a maximal independent set or a 
minimal generating set. We want to describe a model by a sequence of 
cardinal numbers. These should be the cardinalities of maximal independent 
sets and, together, these sets should generate the model. Thus we need to 
generalize both the notions of independence and generation. The fact that we 
must consider more than one sort of independent set introduces complexities 
not even hinted at in vector spaces. We will first discuss one of these hidden 
difficulties, "What should we count?". Then we will consider the generaliza
tion of the notions of independence and generation. Finally, we will return to 
some of the further difficulties arising from consideration of families of 
independent sets. Some of these difficulties can be solved for the stable as 
well as the superstable case but for simplicity we will consider only the 
superstable case here. 

If ƒ is a set of algebraically independent elements in an algebraically closed 
field then every permutation,/, of / is an elementary map in the sense that for 
any formula <j>(xl9 . . . , xn\ h <j>(iv . . . , /„) <-> «X*i)» • • • > AO)> T h a t i s> i n 

model theoretic parlance, / is a set of indiscernibles. It is natural, then, to try 
to characterize models by the cardinalities of maximal sets of indiscernibles. 
As soon, however, as we admit the possibility of needing two sets of 
indiscernibles (which is necessary in even so simple a case as the theory of an 
equivalence relation with two infinite classes) we must confront the problem 
of redundant information. For example, if we consider again the question of 
an equivalence relation, any two transversals yield the same information: the 
number of equivalence classes. Shelah solves this problem at the same time 
that he shows how to construct sets of indiscernibles and proposes a notion of 
dependence for elements of an arbitrary model. 

Shelah defines the notion: t(a; X) does not fork over A. This means 
intuitively that a depends no more on X than it does on A. In fact, if A is 
contained in B and C which are subfields of an algebraically closed field, 
then t(C; B) does not fork over A means exactly that B and C are linearly 
disjoint over A. A type p G S (A) is stationary if it does not admit two 
contradictory extensions, neither of which forks over A. Now Shelah shows 
that if / is an independent set over A (i.e. for each i G I t(i; A u / — {/}) 
does not fork over A) and if all members of I realize the same stationary type 
then ƒ is a set of indiscernibles. I is said to be based on that stationary type. 
Similarly, iîp G S(A), A0 C A,p does not fork over A0 a.ndp\A0 is stationary 
then/? is said to be based on A0. We define K(T) as the least cardinal such 
that if p G S(A)9 then p does not fork over A0 for some A0 C A with 
\A0\ < K(T). One sign of the tractability of superstable theories is that for 
superstable T, K(T) = N0. Moreover, if T is superstable and I is an infinite set 
of indiscernibles then I is based on a finite subset I0 of I. Finally, the type of 
redundant information mentioned above can be eliminated. For if I and J are 
based on the stationary types/? and q then in any model M containing I u / , 
there are unique extensions/?' and q' of/?, q to members of S(M) which do 
not fork over dom(/?) u dom(q). Calling I~XJ if p' = q' resolves this 
difficulty with redundant information. However, it does so directly only at a 
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price. That is, the procedure only works to find the dimension of indiscernible 
sets which are based in the model at hand. This is most easily resolved by 
restricting the problem to counting the F?T -saturatedn models (see below). 
Then all types over M are based in M. Since, even in the co-stable case, this 
hypothesis requires that M be co-saturated, it is not directly applicable for 
studying countable models. 

The separation of the notions of independence and generation has the 
following further consequence. If we take a depends on X over B to mean 
t(a; X u B) forks over B, then dependence is a notion of finite character and 
the familiar exchange principle holds. However, dependence is not transitive. 
Shelah deals with this by restricting himself to the class of elements of a 
model which realize what we calls regular types. He proves that a maximal 
independent set of such elements in a model M has a unique cardinality or 
dimension. However, (contrary to the claim of Theorem V.I. 14) the full 
axioms of linear dependence i.e. transitivity, do not hold. 

In algebra, one normally passes from a set to a model (e.g. a group) by 
closing the set under the algebraic operations. There is no such simple 
procedure for passing to an elementary submodel of M. Skolem functions can 
be added to regain a simple notion of generation but not without disturbing 
the spectrum of the theory. Morley replaced "Af is generated by A" with "M 
is prime over A " (i.e. every elementary map from A into a model N of T can 
be extended to an elementary map of M into N). He showed that such prime 
model extensions exist for every A which is a substructure of an co-stable 
theory. Shelah defines the notion of a model being prime within a class K of 
structures (e.g. /c-saturated models) and shows under what hypotheses one can 
prove the existence and uniqueness of X-prime models for various important 
classes K. One of these is what he calls the class of F? -saturated models. We 

K(T) 

will call this notion strong saturation. M is strongly saturated if every type 
almost over (in a precise technical sense) a subset of M with fewer than K(T) 
elements is realized in M. In particular, this guarantees that every member of 
S(M) is based in M. 

Unfortunately, the notion of dependence described above does not always 
satisfy the transitivity axiom. Shelah defines a type to be regular if the notion 
above satisfies the properties of an abstract dependence relation on the 
realizations of p. He proves that if T is superstable each type has a well 
defined weight, a finite number of regular types on which it depends. This 
allows him to deduce the result (independently due to Lachlan [2]) that a 
countable superstable theory has either one or infinitely many countable 
models. In conjunction with the theorem described above, that a non-super-
stable theory has the maximum number of models in each uncountable 
power, this yields: If 1 < n(T, N0) < N0 then n(T, K) = 2K for all uncountable 
K. There remain many difficulties in generalizing this result to arbitrary stable 
T. Indeed there are several difficult open questions concerning countable 
models of stable but not superstable theories. 

There is still a further difficulty with redundant information. Consider the 
theory of two equivalence relations Ex and E2 and suppose that each Ex 

equivalence class intersects each E2 equivalence class in exactly one element. 
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Then the model is determined by the number of E2 equivalence classes and 
the cardinality of one of them. Nevertheless, two transversals for Ex each 
contained in an E2 class, yield inequivalent sets of indiscernibles in the sense 
that the canonical extensions of the types on which they are based are 
distinct. We described above an equivalence relation ~x on sets of indiscerni
bles. Now there is a second equivalence relation —>2 defined by I ~2 J if for 
every strongly saturated M every maximal / ' Ç M with I' ~xl and every 
maximal J' Q M with / ' ~ x J, \J'\ = |/ ' | . Note that ~ 2 can be viewed an 
equivalence relation on the ^<x equivalence classes. 

Now, T is unidimensional if there is only one ~ 2 equivalence class. 
Naturally every Nj -categorical theory is unidimensional and if T is w-stable 
every unidimensional theory is N, -categorical. However, there are superstable 
unidimensional theories. The proof here of the generalized £os conjecture (if 
T is |T\ + -categorical then T is categorical in all powers > \T\) proceeds by 
showing that such a theory is superstable and unidimensional and then by 
further analyzing categorical unidimensional theories. 

Let T be a countable superstable theory and let N^ > c, the power of the 
continuum. If the number of ~ 2 equivalence classes is unbounded then T is 
called multidimensional and T has at least 2^ models of cardinality N«. In 
contrast, if T is not multidimensional T has no more than (ft + l)c strongly 
saturated models of power N^. In fact, in this case a much more precise 
computation can be made because the following sharp theorem holds. For 
every strongly saturated model M, there is a strongly saturated model N Q M 
with \N\ < c and an independent set J such that M is prime among the 
strongly saturated models containing N u J» Note that there are theories 
which are neither multidimensional nor unidimensional. 

We have summarised only about half the contents of the book. We have 
not mentioned the exhaustive treatment of rank in model theory nor the 
treatment of two-cardinal theorems; both subjects are essential to the lines we 
have discussed. In addition, there are major new results on ultraproducts and 
Keisler's order on theories which are peripheral to the main line. 

The book contains no applications but we'll mention two which indicate 
the way this subject could influence algebra. First, the theory of separably 
closed fields of characteristic p is not superstable, indicating that a structure 
theory for such fields will be difficult despite the superficial resemblance to 
algebraically closed fields. Second, S. Garavaglia has shown that any w-stable 
module can be uniquely decomposed into directly indecomposable modules. 
In addition to unifying a number of known results, this provides a new 
tractable class of modules for algebraists to study. 

We have barely sketched the outline of Shelah's dimension theory. There 
are undoubtedly many refinements, simplifications and applications to come. 
Nevertheless, this book will remain the essential reference in the field for 
years to come. 
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Singular homology theory, by William S. Massey, Graduate Texts in Math., 
Springer-Verlag, 1980, xii + 265 pp., $24.80. 

Mathematics students normally encounter a mixture of courses on topics in 
pure mathematics, such as number theory or modern algebra, and courses in 
which mathematical techniques are applied to solve problems in the physical 
and biological sciences and engineering. But often the first occasion offering 
a student an opportunity to apply techniques from one branch of mathe
matics to solve theoretical problems in another is an introductory course in 
algebraic topology. Even for the student whose primary interest lies in 
another field, the subtle strength of these methods can be a source of genuine 
excitement and fascination. One need only spend some time trying to prove 
Brouwer's Theorem directly, that a continuous map of the closed «-disk Dn to 
itself must have a fixed point, to appreciate the effectiveness of homology 
theory. 

These refined tools are not easily assimilated. The essential machinery must 
be constructed with care, for although the ideas may have solid geometric 
motivation, the level of abstraction and complexity can lead to confusion and 
a lost sense of direction. One must scrupulously avoid the tendency to view 
the constructions as the objective rather than as the tools to be applied. This 
transition is best made gradually, with ample explanations and examples. The 
patience and perseverance required are amply rewarded since a foundation is 
established for developing more sophisticated methods with applications far 
beyond these initial steps. Additionally, analogous constructions and tech
niques have evolved in other branches of mathematics and have become part 
of the established repertoire. 

Perhaps these are in part the reasons why an introductory course in 
algebraic topology appears in the mathematical curriculum at many institu
tions. This has not always been the case. As recently as twenty-five years ago 
such courses were quite rare. The discipline itself was already well estab
lished, benefiting from the research of some of the finest mathematicians of 
the time. But most of these scholars were originally trained in related fields 


