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uniqueness result is very tidy: P is unique, and u is unique up to a positive
affine (linear) transformation: v serves in place of u iff there are reals a > 0
and B such that v = au + S.

The preceding theories, plus others that involve difference measurement,
product structures with additive and nonadditive representations, expected
utility, subjective probability, and measurement based on partial orders and
binary choice probabilities, are discussed by Roberts. Because Measurement
theory is designed to introduce the reader to the subject without getting
bogged down in mathematical details, longer proofs that are available
elsewhere are not repeated. The presentation is carefully developed and is
mathematically rigorous in the best sense of that phrase. At the same time,
the book proceeds at a relaxed and readable pace that reflects substantial
concern and expertise on the author’s part to communicate with readers not
previously conversant in measurement theory.

As an introduction to the axiomatic approach to measurement theory, the
book succeeds well. Its value as a general introduction to measurement is
considerably enhanced by numerous examples from the behavioral and social
sciences. One chapter is devoted to psychophysical scaling, and there are
discussions of application in energy, air-pollution, and public health.

Roberts includes a wealth of exercises that extend the theory and suggest a
variety of potential applications. He has used parts of the book in an
undergraduate course in mathematical models in the social sciences, and most
of the book with first-year graduate students in mathematics. While I believe
that Measurement theory is well suited for introductory courses as well as
informal learning situations, it should also prove useful as a reference source
for people doing research in measurement theory.

All told, T feel that Roberts’ book is superbly well done, and that it should
serve handsomely as the introduction to the theory of measurement for many
years to come.

PeTER C. FISHBURN
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Etale cohomology, by J. S. Milne, Princeton Univ. Press, Princeton, N.J., 1980,
xiii + 323 pp., $26.50.

A journalist once asked Sir Arthur Eddington (or perhaps it was Ruther-
ford, the story is doubtless apocryphal anyway) whether he was one of only
three men in the world who understood Einstein’s theory of relativity. “And
who,” came the reply, “is the third?”

Here is a similar story I can vouch for personally. About a week after P.
Deligne proved the last of the Weil conjectures several years ago (more about
these in a moment) I received through the good offices of a friend who was in
France at the time some fifty pages of detailed notes on the proof. This
obviously was a hot item. I was visiting a major North American university,
so I offered the chairman, himself a number theorist, the notes for Xeroxing.
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“Oh no,” he said, “no one in this department would understand them
anyway.”

How sad that modern science has come to this pass. Not only are we
misunderstood by the world at large, but so few of us actually understand the
greatest achievements in our own fields. This brings me to étale cohomology,
that extraordinary unification of arithmetic and topology which must rank as
one of the triumphs of twentieth century mathematics. It was conceived by
Grothendieck and realized by Artin, Deligne, Grothendieck, and Verdier in
1963. (The image of mad scientists rubbing their hands with glee while
electricity flashes against the darkened sky and the monster slowly raises
himself to the sitting position on the table . . . is perhaps exaggerated.) Since
then, in arithmetic it has led to the proof of the Weil conjecture (Deligne), in
algebraic topology it was central to the proof of the Adams conjecture by
Quillen and Sullivan, in group theory it enabled Deligne and Lustig to give a
unified construction of all characters of finite Chevalley groups, .... In
short, this is a gal all the boys should be pursuing. If they’re not (and they’re
not) perhaps it’s because she’s misunderstood, or more precisely because she’s
not understood at all. Enter the good doctor Milne with an impressive tome
revealing all, including diagrams of her private parts. But before we take a
peak at what Professor Milne has to show us, let’s recall briefly the motiva-
tion as formulated by Weil in about 1950.

Suppose we have a variety X defined over the finite field (Galois field) of ¢
elements F,. For example, X might be the zeros of a polynomial f with
coefficients in Fq,

X: (T, Ty, ..., T,)=0.

One would like to know how many points X has with values in F,. (In the
example, this amounts to asking how many solutions f has with the 7; in F,.)
Weil’s insight is that we should view these points as fixed points of a certain
endomorphism, the frobenius, acting on the variety X obtained by extending
the scalar field from F, to the algebraic closure F,. Again in the example, the
set of solutions (¢, . . ., ,) to f = 0 with #; € F_ is stable under the automor-
phism F: (¢, ..., t,)> (¢f, ..., t]), and the set of fixed points of this map is
precisely the set of solutions in F.

Now Lefschetz, in a topological context, had established that under suit-
able transversality hypotheses, the number of fixed points of an endomor-
phism F of a topological space X was given by the alternating sum of the
traces of F* acting on the Betti groups H*(X).

Weil remarked that what was needed was some analogue of the Betti
groups in the context of our variety X. Moreover, if one wanted estimates
(number theorists love estimates) on the number of F -points of X (resp.
F,-solutions of f) one best have some idea of the absolute values of the
eigenvalues of F as it acted on these pseudo Betti groups. Weil formulated
some precise conjectures and proved them for the case of curves (f =
AT,, T,), a polynomial in two variables). Some years later, Grothendieck et
al. constructed a suitable Betti theory, étale cohomology, and subsequently
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Deligne established the all important Weil conjecture that the eigenvalues of
F acting on H(X) had absolute values g/2.

For example, when X is a complete nonsingular curve of genuS g, one has
HY(X), H'(X), and H*(X). H® and H? are one dimensional and F acts by
multiplication by 1 and g respectively. H(X) has dimension 2g and the Weil
conjecture says that the eigenvalues of F have absolute value ¢'/2 Thus if N
is the number of F-points of X, one finds

IN — 1 - q| < 2gg'2

But what is this thing called étale cohomology? The problem with doing
topology in arithmetic context is that there is no good algebraic notion of an
open neighborhood of a point. On the other hand, as Zariski and Abhyankar
established, there is a reasonable notion of an algebraic fundamental group,
lying somewhere between a topological fundamental group and an arithmetic
galois group. Grothendieck’s insight was that one could build the whole
machinery of algebraic topology on the notion of covering. Open sets no
longer sit in the space, rather they lie over the space. Combine this insight
with a peck of homological algebra and out comes étale cohomology.

Actually, there is one other point which should be mentioned. Pathologies
can occur if one works with infinite coverings. It is best, as in galois theory, to
work with finite extensions. Thus, in the first instance, one defines cohomol-
ogy groups with finite coefficients,

étale(X’ Z/nZ).
(It is also well to stick to the case when the coefficient group has order prime
to the characteristic p of the field of definition of X. The p-adic theory has
curious properties and is best left to the experts.) One then defines an /-adic
theory
Hil(X, Z,) = lim Hiy(X, Z/1'Z).
r

Finally, after a couple of drinks things tend to get sloppy and one begins to
neglect torsion, defining

Hét(X’ Ql) = Héit(X’ Zl) ®,Q.

Now to work! Or, in other words, to quote from the book under review
(Chapter I, paragraph 1, from the top).

“Recall that a morphism of schemes f: X — Y is affine if ....” This is
(clearly) a serious scholarly work, very much in the Grothendieck school with
emphasis on sheaves, exact sequences, homological algebra, and what might
be called the geometry of arrows (Corollary (1.10) on p. 6 for example: “Any
proper, quasi-finite morphism f: Y — X is finite.”). An amusing point: in
leafing through the collected works of Weil (who in some sense started it all) I
am unable to find a single exact sequence or commutative diagram. The
reader is invited to compare this with the work under review (or indeed with
any of the published work of either author or reviewer). It would be
interesting to see more clearly the shift in mathematical philosophy which
must underlie this shift in notation.
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The first three chapters discuss étale morphisms, sheaf theory, and
cohomology. The first two topics are covered rigorously, if not in a totally
self-contained fashion. Milne recommends, for example, the book of Atiyah-
Macdonald on commutative algebra and refers to various technical results
proved there. The section on sheaves treats with some care the various
functors on sheaves f*, f., f', f, associated to a closed immersion f: Y — X.
The important notion of constructible sheaf is postponed and appears for the
first time somewhat incongrously in the chapter on curves and surfaces.

The third chapter, on cohomology, discusses derived functor and Cech
cohomology as well as change of topology and principal homogeneous spaces
(including some discussion of principal homogeneous spaces for the flat
topology). I must criticize somewhat the treatment of cohomology with
compact support. Suppose X is a variety which is included as an open
subscheme in a complete variety X,

XS,
and F is a sheaf on X. The extension by zero i F is the sheaf on X whose
stalks at points of X coincide with those of F and whose stalks are 0 on
X — X. One defines the cohomology with compact support H*(X, F) to be
the cohomology of i, F. As in the classical case of singular cohomology there

are two important facts: o
(i) When F is the restriction of a sheaf F on X, there is a long exact sequence

- > H/(X,F)—> H'(X, F)

S>H(X-X,FIX -X)> H*(X,F) > - -.

(ii) When F is a torsion sheaf, the groups H*(X, F) are functorial in X and
independent of the choice of compactification X.

Property (i) is easy, but (i) is proved using base change, which is a deeper
result for étale cohomology. Milne defines these cohomology groups with
compact support in Chapter III, mentioning that he will establish indepen-
dence of X in Chapter VI. Meanwhile the groups are used extensively in
Chapter V (admittedly only for smooth curves, where it is possible to define a
canonical compactification). Since results from Chapter V would go into a
complete proof of base change, there is a certain feeling of circularity.

I am also unhappy with chapter IV on the Brauer group. The Brauer group
plays an important role in the development of étale cohomology through the
medium of Tsen’s theorem, which implies that the Brauer group of the
function field of a curve vanishes. From this, one deduces vanishing for the
cohomology of a curve in degrees greater than 2. Milne doesn’t prove Tsen’s
theorem (although the proof is both short and elegant), but instead devotes a
whole chapter to aspects of the Brauer group much less central to the theory.

Chapter V discusses cohomology of curves and of surfaces. I particularly
liked the discussion for surfaces, including vanishing cycle theory and a proof
by Artin of Castelnuovo’s criterion for rationality of a surface.

Chapter VI is the heart of the book, containing the base change theorem,
Poincaré duality, and rationality for zeta and L-functions, as well as other
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topics. These are all carefully treated with the exception of base change.
Perhaps I should explain, since the phrase has come up several times, that
base change refers to the analogue in étale theory of the result in singular
theory that for a proper map of reasonable topological spaces f: Y — X, one
hasforx € X

HA(f7(x)) = lim H*(§(V)

where U runs through neighborhoods of x. (The proof follows from the
existence of neighborhood retracts of f~!(x) in Y.) Given the importance of
this result, Milne’s treatment is much too rapid. I recommend instead the
proof in Deligne’s Springer Lecture Notes SGA 4;.

In sum, the author has done a tremendous service by organizing the
material in a careful and united way which makes it possible for serious
students to learn. In its way, the terse and brilliant account of the theory by
Deligne (who disposes of the whole business in 65 pages) in SGA 41 is
unexcelled. On the other hand, having watched graduate students trying to
make sense of the many details, I can testify to the need for a book like this.
Having tried to teach a course in the subject, I can testify to the achievement
it is to write one.
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Curves on rational and unirational surfaces, by M. Miyanishi, Tata Institute of
Fundamental Research, Bombay, 1978, Narosa Publishing House, New
Delhi, 1978, 307 pp., $9.90.

Traditionally, algebraic geometry has meant the study of projective varie-
ties, with its richest results having been produced for curves and surfaces in
projective spaces. So, it was not always clear how deeply algebraic geometry
was related to commutative algebra. Until rather recently, one might almost
perfunctorily start out with affine varieties as zeros of ideals in a polynomial
ring, but as soon as one got serious one would switch over to projective
varieties and geometric arguments. Indeed, the great Italians (Castelnuovo,
Enriques, Severi, ...) appeared oblivious to commutative algebra while
developing their immensely successful algebraic surface theory. Even Hilbert,



