
BOOK REVIEWS 109 

theory. He finds them in £°°, which confirms the physicists's prejudices about 
the appropriate boundary condition, but doesn't seem to fit very nicely into 
the Hubert space framework. In physics texts these non-normalizable eigen­
vectors occur right at the beginning and play a fundamental role throughout. 
A few of their properties may be derived from a simple theory based on 
Hilbert-Schmidt operators [3], but a detailed study seems to need scattering 
theory. 

Schechter's book also contains a treatment of certain severe local singulari­
ties of v. It is proved that even in this situation the wave operators are weakly 
complete. This is reasonable, since the main factor affecting scattering should 
be the behavior of the potential near infinity. However there is an example 
due to Pearson [5; 1, p. 167] that shows that it is possible for a wild enough 
local singularity to trap an incoming particle. Completeness of the wave 
operators is not a matter of mere formal manipulation; it requires serious 
analysis. One version of this analysis is provided in Schechter's book. In 
quantum physics the real world may be elusive, but some of the mathematics 
is now under control. 
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Formal groups are Lie groups treated in the style of the eighteenth century. 
This means, first of all, that there is no fuss about degrees of differentiability 
or global topology. We simply have a neighborhood of the origin in n-space 
with a "group law" composition z = f{x, y) where the coordinates zt = 
f;(x,y) are power series in the coordinates of x and y. The composition 
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should be associative wherever all the products make sense, which says that 

(1) ƒ(ƒ(«, v),w)=f(u,f(v,w)) 

is identically true for the power series. We normalize by taking the origin at 
the identity, so 

(2) * = ƒ ( * , 0) =/(O, x). 

Inverses need not be mentioned, because a power series inversion produces 
them. 

At this stage we have got back to the nineteenth century, but now we take a 
further step and forget about convergence questions. We can define a formal 
group law by requiring properties (1) and (2), and for this it makes no 
difference whether the power series actually converge anywhere. As one 
might easily predict, it is rather recursion relations and number-theoretic 
properties of the coefficients that play the major role in the study of formal 
groups. Euler would have felt completely at home. 

Nonetheless, the study of formal groups as such did not begin until a 1946 
paper by Bochner [1]. His purpose was to show how "formal" the usual Lie 
group classification was. Working over an arbitrary field of characteristic 
zero, he constructed the Lie algebra of a formal group (you can get it from 
the second-degree terms) and proved that it determines the formal group up 
to formal change of variable. At the time this must have seemed interesting 
but not significant, and the paper got only four lines in Mathematical 
Reviews. Still there is one development worth tracing along this line of 
thought. Lie algebras of course were known to correspond to ordinary Lie 
groups (up to local isomorphism), and so Bochner's theorem implies that in 
any real formal group you can make a change of variable to get a nontrivial 
radius of convergence. If you wonder how to make this explicit, you will 
probably remember the classical "Campbell-Hausdorff formula"; for each 
Lie algebra it gives an associated formal group law, and it is known to 
converge. But now if you are thinking of arbitrary fields of characteristic 
zero, you may well remember that the reals are only one of the completions 
of the rationals—there are also all the /?-adic completions. And sure enough, 
the Campbell-Hausdorff formula also has a nontrivial /?-adic radius of con­
vergence. Thus the whole power series theory goes over to an analogous 
theory of p-adic Lie groups. And in the sixties, M. Lazard [3] was even able to 
prove an analogue of Hubert's Fifth Problem, an intrinsic characterization of 
those topological groups that arise as such/?-adic Lie groups. 

The subject really takes wings when we consider more general coefficients 
in f(x,y). Take for instance the simplest case, where there is just one variable. 
If our ring of coefficients contains the rationals, then Bochner's argument 
shows that the Lie algebra determines the group, so up to change of variable 
there is only one of them. But over the integers, or in characteristic p9 there is 
(for instance) no exponential series and thus no integral change of variable 
taking the formal additive group f(x, y) = x + y to the formal multiplicative 
group f(x,y) = x + y + xy. (Yes, this is multiplication: remember the iden­
tity is at the origin, so x is the coordinate of the number 1 + x.) Over an 
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algebraically closed field of characteristic/?, Lazard [2] showed that these two 
are the first two in an infinite sequence of different one-parameter group laws 
classified by the lowest power of x occurring in the formal product of x by 
itself p times. 

Lazard's argument for this used the straightforward approach of taking a 
polynomial satisfying (1) up to degree n and seeing how it might be extended 
to work in the next degree. In principle, this method might be applied over 
any coefficient ring; one can thus prove for instance that the one-parameter 
formal groups over reduced rings are commutative. (This is not trivial, and it 
may fail when coefficients are allowed to be nilpotent.) But what the method 
really leads to is the universal one-parameter group. That is, suppose we write 
down a power series f0(x, y) = S a ^ y 7 , leaving the atj indeterminate. As wé 
work out the conditions that f0 be a commutative formal group law, we find 
that they are a collection of polynomial identities that the atj must satisfy. We 
can define a ring R0 to be Z[{a0}] where we impose just these identities on the 
ay. Then f0 is a group law with coefficients in R0, and any commutative group 
law ƒ with coefficients in any ring R comes from f0 by a homomorphism 
R0-+ R (send the formal atJ in R0 to whatever the actual coefficients of ƒ are 
in R). Obviously then we can prove various properties and identities once and 
for all if we can prove them for the universal group law/0. But what makes f0 

really interesting is Lazard's proof that R0 is actually a polynomial ring 
Z[{ Uj}]. This fact has immediate implications; for instance, that every group 
over the finite field Z/pZ is the reduction of one over the integers. And 
unlike some power series proofs, this one is nontrivial; that is, one cannot 
simply express some of the atj in terms of others that are free. The fourth 
indeterminate first occurs in the form 21/4, for instance, and only later, more 
complicated terms show that this element of R0 is the double of another one. 

These last remarks have been rather technical, and "the coefficient ring for 
the universal one-parameter commutative formal group law" does not sound 
like a topic apt to stir the souls of any but devoted algebraists. But in 1969 
Quillen passed this way [5], and a swarm of topologists followed. It turns out 
that certain extraordinary cohomology theories define formal groups, and the 
one defined by complex cobordism is precisely the universal one. Brown-
Peterson cohomology in particular arises from it by a "p-typification" process 
that was already familiar algebraically. Purely algebraic computations on the 
universal group imply that the only relations satisfied by Chern numbers of 
complex manifolds are those that follow from the Riemann-Roch theorem. 

More could be said about this topic, but not by me. Let me retreat to a 
quite different application of formal groups. If we want to study algebraic 
extensions of a field K, the simplest ones we can begin with are those with 
abelian Galois group. The simplest K to work with (beyond finite fields) are 
the finite extensions of the/?-adics Qp. (The theory is then called "local class 
field theory".) For Qp itself the abelian extensions are all given by adjoining 
roots of unity. For larger K this is not true, and the classical theory gives only 
an indirect construction of the extensions. More specifically, the roots of 
unity of order prime to p still give all the extensions of one type 
("unramified" ones), but the /?-power roots of unity no longer give all the 
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"totally ramified" extensions. In 1965 Lubin and Tate [4] discovered that we 
were simply looking at the wrong group. The roots of unity, after all, are just 
the torsion elements in the multiplicative group. There is a natural construc­
tion that gives the multiplicative group over Q^ but different formal groups 
over larger K, and they define/?-adic Lie groups where the points of /?-power 
order give precisely the extensions we need. 

What next? More variables, of course—all this has been just one-parameter 
groups. Historically, indeed, much of the interest in formal groups arose in 
this generality. In characteristic zero, Lie algebras are a good way to deal with 
Lie groups, and in particular with algebraic groups. The algebraic groups still 
make sense in characteristic p, but the correspondence breaks down badly. 
One can still define a formal group for each algebraic group, and it is a 
structure intermediate between algebraic groups and Lie algebras. For semi-
simple groups it turned out to be easier to classify the groups directly, but for 
abelian varieties this approach has been very significant, particularly in 
number-theoretic applications. 

The most striking multivariable results deal with commutative «-parameter 
formal groups over an algebraically closed field (of characteristic p—in 
characteristic zero they are all vector groups, since their Lie algebras are 
commutative). These, with certain natural "Frobenius" operations on them, 
correspond to modules over a certain noncommutative ring. This fact goes 
back to a string of papers by Dieudonné in the fifties, but it has been 
approached in a number of different ways since then, each connecting the 
result with different material. Dieudonné's original method worked with the 
"hyperalgebra", the continuous dual to the power series ring—what analysts 
would call the distributions on the group supported at the origin. This is a 
cocommutative Hopf algebra, and Dieudonné's ideas have been taken up in 
general Hopf algebra studies. Gabriel, approaching the subject through a 
different dualization, interpreted the hyperalgebras as rings of functions on 
commutative unipotent algebraic groups, and he classified these by their 
maps to "Witt vector" groups. Cartier introduced a method using "/?-typical" 
curves, working directly with the power series; this in principle works over 
arbitrary base rings, and using it he was able to analyze the formal groups 
over/7-adic integer rings with a given reduction to the residue field. Research 
in this area is still active. 

Without explicitly saying so, I have been discussing HazewinkePs book, 
because it contains everything I have mentioned (except Lie groups) and 
much more—I haven't found space for the nice properties of "logarithms" of 
integral group laws, or for generalized Witt vectors and the Artin-Hasse 
exponential, or for the Atkin-Swinnerton-Dyer congruences for elliptic 
curves, or . . . . A brief outline will show specialists where the book's empha­
sis lies. The text begins with 90 pages on constructing formal groups, first 
with one parameter and then with more; this includes the Lubin-Tate groups, 
but is mainly devoted to universal groups. (There is a technical innovation 
here, a very general formulation of the arguments for showing that solutions 
of certain functional equations have integral coefficients.) Then come 50 
pages on curves and Witt vectors (from here on commutativity is almost 
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always assumed). The heart of the book is two long chapters on classification 
theory: 160 pages on endomorphisms and classification by power series 
methods, and 110 pages on Dieudonné modules (done via curves, and 
including the "tapis de Cartier"). The applications then take just 50 pages, 
followed by 40 pages sketching the dual approach through hyperalgebras. 

The one objection to the book, perhaps, is that it is sometimes a bit too 
reminiscent of the eighteenth century: my own tolerance for power series 
computations gives out before the author's does. His bent is also away from 
my own main interest, the connections with finite group schemes and ^-divisi­
ble group schemes and abelian varieties; for this any interested reader should 
consult [6]. The three applications, though they should be clear to specialists, 
presume enough background that the general reader may have trouble 
appreciating them. Still, the book will clearly be a standard and valuable 
reference work. It has good bibliographical notes and a bibliography essen­
tially complete through 1976+ . Hazewinkel has also nicely made the first 
section of each chapter a self-contained introduction and summary, so that 
anyone reading just these parts can get a fair first impression of the material. 
This might well be worth doing, if only to see what a sophisticated theory can 
arise from the simple question of which power series satisfy f(x, f(y, z)) = 
f(f(x,y)9z). 
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Ramsey theory, by Ronald L. Graham, Bruce L. Rothschild, and Joel H. 
Spencer, John Wiley and Sons, Inc., New York, 1980, ix 4- 174 pp., $21.95. 

In recent years there has been among mathematicians an explosion of 
interest in discrete mathematics. In particular, an enormous number of 
Ramsey type results have been published during the last ten years. Thus, it is 
appropriate that a book should be published on Ramsey theory. 

Although the scope of the book is broad, covering all of the main areas of 
the theory, the authors do not attempt to make the book an encyclopedia of 
known theorems, proofs and conjectures. Instead, they have chosen to give 


