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PROBLEMS ON ABELIAN FUNCTIONS AT THE TIME 
OF POINCARÉ AND SOME AT PRESENT1 

BY JUN-ICHI IGUSA 

This is an expanded version of our symposium lecture; it consists of two 
parts. In the first part we have tried to explain the problems on abelian 
functions at the time of Poincaré with a brief follow-up; in the second part we 
have explained, among others, a problem of Riemann and Weil on Jacobi's 
formula as one of the problems on abelian functions at present. 

1. Abelian functions by Poincaré. 
1-1. If the variable x and a general solution y of a linear differential 

equation with polynomial coefficients are algebraically dependent, the peri
ods of abelian integrals of the first kind associated with the curve f(x, y) = 0 
satisfy certain relations. In his earliest works on abelian functions Poincaré 
examined such relations in some special cases. He also used a similar relation 
in a joint paper with Picard of 1883 on a "theorem of Riemann". Poincaré 
later developed a general theory of reducible integrals. This theory played 
some role in almost all of his works on abelian functions. We shall start by 
recalling the theorem of Riemann: 

There are three related theorems concerning a complex torus. If ƒ is a 
meromorphic function on Cg, an element a of Cg such that f(z + a) = f(z) 
for a variable z in C* is called a period off; the set of all periods of ƒ forms a 
closed subgroup of Cg, called the period group of ƒ. Let A denote a lattice in 
C*, i.e., a discrete subgroup of Cg with compact quotient; then a meromor
phic function ƒ on Cg whose period group contains A, i.e., a meromorphic 
function on the complex torus T = C*/A considered as a function on Cg, is 
called an abelian function relative to A and a holomorphic function ® on Cg 

with the property 

0(z + a) - e(L0(z))0(z) 

for every a in A, in which e(t) stands for exp(27rV— 1 i) and La(z) is an 
affine linear function of z depending on a, is called a theta function also 
relative to A. 

Finally a complex g-by-2g matrix co is called a Riemann matrix of degree g 
if there exists a skew-symmetric integral matrix C of degree 2g, called a 
principal matrix, such that 

„C'a) = 0, (l/lV^l )o>C% > 0; 
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the second condition means that the hermitian matrix (1/2V— 1 )coC'co is 
positive-definite. Such a matrix with 

as a principal matrix appeared in Riemann's paper [28] of 1857 as a period 
matrix of abelian integrals of the first kind associated with an algebraic curve 
of genus g. At any rate with this terminology the three theorems, called the 
Riemann- Weierstrass theorems', can be stated as follows: 

(RW-1) Any g + 1 abelian functions are algebraically dependent', 
(RW-2) every abelian function f can be expressed as a quotient of two theta 

functions', 
(RW-3) if there exists an abelian function relative to A with a discrete period 

group, any g-by-2g matrix co whose 2g columns generate A is a Riemann 
matrix. 

We recall that a divisor of a complex manifold is an integral linear 
combination of its subvarieties of codimension 1 ; it is called positive if the 
coefficients are nonnegative. The zeros and poles, counted with their multi
plicities, of a meromorphic function ƒ ¥= 0 on the manifold are positive 
divisors; and their difference is called the divisor of f The divisors of an 
abelian function ƒ ¥" 0 and a theta function © ^= 0 may be considered as 
divisors of T. With this terminology (RW-2) can be replaced by the following 
theorem: 

(RW-2#) Every positive divisor of T is the divisor of a theta function 0 = ^ 0 . 

As a consequence, if ƒ ^ 0 in (RW-2), the two theta functions can be 
chosen so that their divisors have no component in common. On the other 
hand the converse of (RW-3) is true and straightforward; in a paper of 1921 
Lefschetz [16] proved the following theorem: 

If co is a Riemann matrix of degree g and A is the subgroup of C8 generated 
by its 2g columns, necessarily a lattice in Cg, there exists a finite set of theta 
functions giving rise to a biholomorphic map of T = Cg /A to a subvariety A of 
a complex projective space. 

And in 1949 Chow [5] proved the following theorem: 

Every closed subvariety of a complex projective space is an algebraic variety 
and a meromorphic map between two such varieties is a rational map. 

In particular the subvariety A in the Lefschetz theorem is a smooth 
algebraic variety unique up to an isomorphism and it is called the abelian 
variety associated with co. If co is a special Riemann matrix coming from an 
algebraic curve, the abelian variety A is called the jacobian variety of the 
curve. 

1-2. We shall now go back to 1883: it was known that Riemann had 
mentioned (RW-3) in a slightly different form to Hermite at the time of his 
visit to Paris in 1860. Hermite regarded the period relation in the general case 
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as extremely remarkable and included it without proof in his note [10] to the 
sixth edition of Lacroix's text book, vol. 2, which appeared two years later. 
On the other hand, in 1869 Weierstrass published a short paper [36], in which 
(under the assumption in (RW-3)) he made the following statement: there 
exist g + 1 algebraically dependent abelian functions by which every abelian 
function, all relative to A, can be rationally expressed. Actually he made a 
stronger statement and he later outlined a proof of the above statement in a 
letter to Borchardt of 1879. We might mention that Weierstrass was not sure 
about (RW-2) in 1869 and became sure about it only in 1879; we might 
further mention that his detailed but not complete treatment [37] was pub
lished in 1903 after his death. Therefore although Riemann's paper of 1857 
certainly was a classic in 1883, the theory of general abelian functions was 
still up in the air at that time. 

The short paper [20] by Poincaré and Picard was written under the above 
circumstances. In that paper they announced an outline of a proof of (RW-3), 
depending on (RW-1) by Weierstrass, and stated (RW-2) as its immediate 
consequence; there we see the fruitful idea to investigate T via Riemann's 
theory applied to a suitable 1-dimensional subvariety of T. Later in 1891 
Appell [2] gave a satisfactory proof of (RW-2) f or g = 2 by using Poincaré's 
theorem of 1883 in the Acta Mathematica to the following effect: every 
meromorphic function on C2 can be expressed as a quotient of two holomor-
phic functions on C2. This theorem was generalized by Cousin in his thesis of 
1895 and AppelPs proof became valid for all g. 

In 1897 Poincaré announced outlines of proofs of (RW-1) and (RW-2) in 
[24]; a detailed proof for (RW-2) appeared the following year in [25] and one 
for (RW-1) appeared five years later in [26]. The above second proof of 
(RW-2) by Poincaré was influenced by Appell; he simply modified the proof 
of his theorem in the Acta paper of 1883, on which AppelPs proof depended, 
so that for an abelian function the two entire functions became theta 
functions. This proof was reproduced by Weil [40] in a Bourbaki seminar of 
1949; Weil's proof was indeed a new proof in as much as the classical 
potential theory was eliminated. As for (RW-1) Poincaré tried to show that 
the "image" of T by g + 1 abelian functions was algebraic; his idea to use the 
degrees of subvarieties of a complex projective space was interesting but the 
proof was not quite satisfactory. It was developed on a sound basis in the 
already mentioned paper by Chow of 1949. And in 1955 Siegel [35] gave a 
complete and yet elementary proof to the following general theorem: 

Any g + 1 meromorphic functions on a g-dimensional compact complex 
manifold are algebraically dependent; if there exist g algebraically independent 
meromorphic functions, there exists another meromorphic function so that every 
meromorphic function on the manifold can be rationally expressed by those 
g + 1 functions. 

We must also mention Serre's influential works on this and other related 
theorems; as an example we refer to his Bourbaki talk [32] of 1954, which 
preceded his FAC and GAGA, for an elegant proof of Chow's theorem. 
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1-3. We shall pass to reducible integrals: as we have recalled, Poincaré first 
worked on special examples; then he learned general theorems of Weierstrass 
through a paper by Kowalevski [14] of 1884. And he wrote [21] in the same 
year to supply proofs to those Weierstrass theorems and also to generalize 
them; two years later he wrote another paper [22] on reducible integrals with 
supplements and applications. In the following we shall review Poincaré's 
main theorem in its original form; but first we shall recall some definitions. 

We say that two Riemann matrices cov co2 of the same degree g are 
equivalent if there exists a pair (A, L) of a complex invertible matrix X of 
degree g and an integral matrix L of degree 2g satisfying X^ = co2L. If we 
pass to the corresponding abelian varieties AVA2, this means the existence of 
a surjective homomorphism from Ax to A2 necessarily with a finite kernel. At 
any rate we have an equivalence relation in the set of all Riemann matrices of 
degree g. 

We recall that every nonsingular skew-symmetric integral matrix C of 
degree 2g can be written as C ^LCQL for some integral matrix L of degree 
2g; in particular iï we define the Pfaffian Pf(C) of C as |det(L)|, we get 
det(C) = Pf(C)2. If co is a Riemann matrix with C as a principal matrix, 
necessarily C is nonsingular and in the above notation co is equivalent to co'L; 
the point is that co'L has C0 as a principal matrix. Therefore every equivalence 
class of Riemann matrices contains one with C0 as a principal matrix. 

If a Riemann matrix co has C0 as a principal matrix, its right square 
submatrix X is invertible and if we write co as co = X(r\g), we will have 

V = T, Im(T> > 0; 

the second condition means that the imaginary part of T is positive-definite. 
The set Sg of all such T'S forms an open convex cone in the vector space of 
symmetric complex matrices of degree g; and in honor of his fundamental 
works, especially [33, 34], it is called the Siegel upper-half space of degree g. If 
M is a real matrix of degree 2g satisfying lMC^M = C0 and if we write 

- ( : 5) 
with submatrices a, b, c, d of degree g, then 

M'T = (ar + b)(cr + d)~l 

defines a holomorphic action of the real symplectic group Sp2g(R) on Sg. 
Poincaré's formulation of his "complete reducibility theorem" involves the 
action of Sp2g(Q) on Sg and it is as follows: 

(P-l) Let co denote a Riemann matrix of degree g with C0 as a principal 
matrix such that for some complex g'-by-2g' matrix co' and for some integral 
2g-by-2g' matrix R, where 1 < g' < g, the upper g'-by-2g submatrix of co can 
be written as co' *R\ then there exist an element M of Sp2g(Q) and a point T' of 
Sg, such that (T' \g) is equivalent to the necessarily Riemann matrix co' and 

in which co = A(T1 ). 
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It follows from (P-l) that the equivalence class of an arbitrary Riemann 
matrix contains one of the form 

f co' ] 

in which <o', co", . . . , w(r) are irreducible or pure Riemann matrices. However 
Poincaré was not aware of the uniqueness of the classes of those component 
matrices; this was later observed by Scorza; cf. Albert [1]. 

An outline of Poincaré's proof of (P-l) in the current terminology is as 
follows: we regard elements of Q2g as column vectors and convert Q2g into a 
symplectic space over Q via the skew-symmetric bilinear form B(x9y) 
= 'xC0y; then the columns of R span a 2g'-dimensional nondegenerate, hence 
symplectic, subspace. Therefore we can find a symplectic basis xv . ..9 xg9 

yl9 . . . 9yg for Q2g such that xl9 . . . , xg,, yl9 . . . 9yg, form a symplectic basis 
for that subspace. If we define M as the inverse of the square matrix of degree 
2g with * ! , . . . , xg9 yl9 . . . 9yg as its columns, then M has the required 
property. 

Actually Poincaré considered Z2g as a symplectic module over Z via the 
same B{x9 y) and tried to find a suitable Z-basis for the submodule generated 
by the columns of R; and, e.g., in the simplest case where g' = 1 he showed 
the existence of M in Sp2g(Z) such that the first row of M • r took the form 

( T T V O . . .0), 

in which k — Pf(fRC0R) and 0 < \i < k. This is equivalent to a theorem of 
Weierstrass; cf. [14, p. 400]. 

At any rate, as an immediate consequence of (P-I), Poincaré observed that 
the 5/?2g(Q)-orbit of V - 1 lg was dense in Sg; cf. [22, p. 340]. He regarded 
this fact as a key to solve various problems: "C'est là une circonstance qui 
donnera, je n'en doute pas, la clef de bien des problèmes". 

1-4. We shall explain how Poincaré applied the above observation to a 
problem on theta functions; we shall first recall a theorem of Frobenius: let 0 
denote a theta function relative to a lattice A in C8 and denote the linear part 
La(z) - La(0) of La(z) by \ / z ) ; then the difference B(a9 b) = \a{b) - Xb(a) is 
an integer for every a9 b in A. Therefore if we choose a Z-basis al9 . . . , a2g 

for A, we get a skew-symmetric integral matrix E of degree 2g with B(ai9 aj) 
as its (/, y)th coefficient. And if E is nonsingular, then co = (ax . . . a2g) 
becomes a Riemann matrix with E~x

9 multiplied by a suitable positive 
integer, as a principal matrix. Furthermore the set of all theta functions 
relative to A with the same e(La(z)) forms a vector space over C and, 
according to Frobenius [8], its dimension is equal to Pf(is ). 

Poincaré consistently restricted his attention to the case where E = -kC0 

for some positive integer k; in that case the dimension is kg. A theta function 
with E = -kC0 is called a theta function of order k; for such theta functions 
we may assume that A is the lattice generated by the 2g columns of (rl ), in 
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which T is in Sg. In a paper [19] of 1883 and later in [22] already mentioned, 
Poincaré proved the following theorems: 

(P-2) Let © j , . . . , © ^ denote g the ta functions of orders kx, . . . , kg; then the 
number N of common zeros, each counted with its multiplicity, of 

e,(z - bx),..., e,(z - bg) 
in T — Cg /A is equal to kx . . . kgg\ provided that it is finite', 

(P-3) let f ! , . . . , ÇN denote representatives in C8 of the common zeros; then 

2 & = * , . . . kg(g - 1)! 2 6y + c mod A, 

m w/z/c/i c w independent of bx, . . . , 6g. 

The above theorems were later generalized by Wirtinger [41]. Although 
they are now well understood, Poincaré's proofs are still interesting: he 
observed in (P-2) that the number N was a continuous function of r and the 
parameters in La(z); hence N was a constant. In order to determine this 
constant he specialized r to a diagonal matrix and thus reduced the general 
case to the elliptic case where g = 1. 

The proof of (P-3) is more involved: by using a generalization of Abel's 
theorem he showed that the sum depended continuously and only on r and 
the parameters in La(z) once bx, . . . , bg were fixed. By using the transforma
tion theory he then showed that the formula to be proved was invariant under 
the action of Sp2g(Q). On the other hand the S/?2g(Q)-orbit of V— 1 \g was 
already shown to be dense in Sg. Therefore it was enough to verify the 
formula again in the case where r was a diagonal matrix. 

1-5. We have reviewed Poincaré's idea to use (Sx)
g = Sj X • • • X Sx 

embedded in Sg; he also used an infinitesimal neighborhood of (Sj)g in his 
paper [23] of 1895. In that paper he examined the condition for T to be a 
"jacobian point", i.e., a point of Sg coming from an algebraic curve of genus 
g. This problem was treated by Schottky [31] seven years earlier in the first 
nontrivial case where g = 4. Poincaré's method is entirely different from 
Schottky's and it is as follows: 

First of all any theta function of order 1 can be converted into 

the conversion consists of an affine linear transformation in Cg and of a 
multiplication by a "trivial theta functions", i.e., the exponential of a poly
nomial of degree 2 in the coefficients of z. We shall denote by ry and z, the 
(/,y')th coefficient and the ith coefficient of r and z, respectively. If the 
off-diagonal or lateral coefficients Tip i ^j, of r are all zero, we will have 

9{z) = *,(*,) . . . 9g(zB), 
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in which 

for 1 < i < g. 
A hypersurface in Cg is called a translation surface if at every point of the 

hypersurface its neighborhood admits a parametric representation of the form 

* - 2 */('/)> 

in which <>i,. . . , <ffc_i are holomorphic functions of one variable. If T is a 
jacobian point, the hypersurface in C8 defined by 0(z) — 0 is a translation 
surface; this follows from a theorem of Riemann. Poincaré took a point r of 
Sg with very small lateral coefficients and examined the condition that 
9{z) = 0 defined a translation surface in a very small neighborhood of 
£ = ($l9 . . . , fg) where #,(£/) = 0 for 1 < / < g. And in the case where g = 4 
he proved the following theorem: 

(P-4) Put ay = ITTV^I rip rx = al2ana42a43, r2 = al3al4a23a24, r3 = 
fl14a12a34a32> aw<^ 

R = r2 + r2
2 + r3

2 - 2(r2r3 + r3rx + r^a); 

^^« i^(r) becomes a higher order infinitesimal if r is a jacobian point with very 
small lateral coefficients. 

Actually Poincaré wrote down his condition in an irrational form, but the 
two conditions are equivalent. Schottky, on the other hand, found a modular 
form / of weight 8 for the full modular group Sp%(Z) such that / ( T ) = 0 at 
every jacobian point T. If we expand J at & variable point T in which the 
lateral coefficients are very small, we get 

/ = 2- 1 6 - II (0oA.0.o),(o)8 • R + • • • ; 
/ = 1 

the Oy(u) for ij = 0, 1 are the standard elliptic theta functions and the 
subscript / on the right-hand side indicates that the modulus is T/7. The 
relation of the conditions found by Poincaré and Schottky was discussed by 
Rauch [27] with some comments about their proofs. 

1-6. Poincaré's works on abelian functions proper ended by his paper of 
1902. However a consequence of his later papers of 1910—1911 on normal 
functions has to be mentioned. As we have recalled, if V is an algebraic curve 
of genus g, the complex torus associated with its period matrix is biholomor-
phic to an abelian variety J, called the jacobian variety of V. It follows from 
Abel's theorem that J can be obtained also as follows: we take the group of 
divisors of V each with the property that the sum of its coefficients is 0. This 
group contains the group of divisors of rational functions on K, different 
from the constant 0, and the quotient group with a natural structure of an 
algebraic variety becomes an abelian variety isomorphic to / . 
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If we start from an algebraic surface as in Poincaré or more generally from 
any smooth algebraic variety V9 then the period matrix of simple integrals of 
the first kind on V can be obtained by reducing the period matrix associated 
with a general curve on V and, in particular, it is a Riemann matrix; thus we 
get an abelian variety A which generalizes J. Another aspect of / can also be 
generalized. We take the group of divisors of V each homologous to 0 as an 
integral cycle. This group contains the group of divisors of rational functions 
on V, different from the constant 0, and the quotient group again becomes an 
abelian variety, say P. Poincaré's theory of normal functions implies the 
existence of a surjective homomorphism from A to P with a finite kernel, i.e., 
the Riemann matrices of A and P are equivalent. This was really an 
important achievement in the theory of algebraic varieties at that time. In the 
general case, however, the abelian varieties A and P, called the Albanese and 
the Picard varieties of V, respectively, are not isomorphic; and the exact 
relation between A and P had been left in the shadows until our thesis [11] of 
1952. 

We shall conclude the first part with the following comments: first of all in 
his paper of 1938 Weil [38] introduced "hyperabelian functions"; this theory 
has not yet been fully explored. On the other hand if we pass to abelian 
varieties, the theory of abelian functions loses its transcendental character. 
And in fact a purely algebraic theory of abelian functions over an algebrai
cally closed field of arbitrary characteristic was created by Weil [39] in 1948. 
Also a purely algebraic theory of theta functions was developed during 1966 
—1967 by Mumford [17]. We might mention that their works contain 
generalizations and new results even in the complex case. Finally we mention 
that Mumford's lecture note [18] and Freitag's report [7] will give a good 
coverage of the results and problems up until 1976. 

2. A problem of Riemann and Weil. 
2-1. We shall start by recalling some definitions: let © denote a theta 

function of order 1 ; then, after a linear transformation in Cg and a multipli
cation by a trivial theta function, it becomes 

eJr'z)=,?„ iti)Xp+HT('+H+X*+H(z+hm")\ 
in which m is the column vector with m', m" in Rg as its first and the second 
entry vectors. If m = 0, we get back to the theta function 0(z) in 1-5. We shall 
assume that m has integral coefficients; then we have 

BJr, - z) = e{m)ejr, z), e(m) = ( - l)'-"-\ 

Therefore 0m{r, z) is even or odd according as the "characteristic" m is even 
or odd in the sense that e(m) = ± 1. In view of 0m+2n(

T> z) = ± ^m(T» z ) f° r 

every n in Z2g we may assume, if necessary, that the coefficients of m are 0, 1. 
The number of theta functions then becomes 22g; of these 2g_1(2g + 1) are 
even and the remaining 2g _ 1(2g — 1) are odd. If m is even, we put 0m(r) = 
0W(T, 0); the holomorphic function 0m on Sg so defined is called a Thetanull-
wert. We shall denote by C[0] the ring generated over C by the Thetanull-
werte. 
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We shall change our notation in Part 1 and denote an element of Sp2g(R) 
by a instead of M ; however we shall denote its submatrices by a, b, c, d as 
before. If / is a positive integer, we define a normal subgroup Tg(/) of Sp2g(Z) 
by the condition a = l2g mod /. We further define a subgroup Tg(/, 21) of 
Tg(/) by the additional condition 

diagO 'b) == diag(c W) = 0 mod 21; 

we have denoted by "diag" the conversion of a square matrix into a column 
vector by its diagonal coefficients. If / is even, then Tg(l, 21) is normal in 
r,(i) = sP2g(Z). 

The correspondence (a, T) —» det(cr + d) defines a holomorphic auto-
morphy factor of Sp2g(R); and if a is in Tg(4), then 

det{cr + d)l/2>-0(o-r)9(ryl 

defines a holomorphic automorphy factor of Tg(4). If we have a power p(o, T) 
of such an automorphy factor of a subgroup T of Sp2g(R), we can let T act on 
the vector space of all holomorphic functions on Sg as 

( a - / ) ( r )=p(a - , ,T ) -V(a - 1 -T) . 

If T is a modular group, i.e., a subgroup of Tg(l) containing Tg(/) for some /, 
any T-invariant function, which satisfies a regularity condition at "cusps" in 
the case g = 1, is called a modular form relative to T. If p(a, r) is the kth 
power of det(cr + d) for some nonnegative integer k, we say that the 
modular form ƒ has weight k; and if p(a9 r) is the kth power of det(cr + d)1/2 

for some T contained in Tg(4), we say that ƒ has degree k. For instance every 
Thetanullwert is a modular form of degree 1 relative to Tg(4, 8). We shall 
denote by ^4(r) the ring consisting of finite sums of modular forms relative to 
T; then ACT) forms a graded integral domain over C and we have the 
following theorem: 

The graded ring ^4(Tg(4, 8)) is precisely the integral closure of C[B] within its 
field of fractions. 

This theorem was proved in [12] by using the theory of compactifications 
by Baily [3] and Cartan [4]. The two rings in the theorem are the same for 
g < 2 but are different for g > 3; and yet the morphism 

proj(^(rg(4,8)))-+proj(C[0]) 

—the notation will be explained in a moment—is always bijective. 
2-2. We shall recall the main theorem in the theory of compactifications: if 

A = A0 + Ax + A2 + • • • is a finitely generated graded integral domain 
over A0 = C, the set of homogeneous maximal ideals of A other than 
Ax+ A2+ - - * becomes a projective algebraic variety proj(/l). The graded 
ring A(T) for any modular group T of degree g is such a ring and it is 
integrally closed. Therefore proj(^4(r)) is defined and it is a normal variety. 
Furthermore the quotient variety T \ Sg is biholomorphic to a Zariski open 
subset of proj04(r)) such that the complement is a finite union of proj(^4(rr)) 
for some modular groups F of degrees less than g. Since proj(̂ 4(T)) for 
T = Tg(l) was first introduced by Satake [30] as a Hausdorff space, it is 
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sometimes called the Satake compactification of T \ Sg. At any rate the main 
theorem and other standardized theorems imply that f or g > 2 every mero-
morphic function on T \ Sg can be expressed as a quotient of two modular 
forms and in particular every holomorphic function on T \ Sg is a constant. 

We shall explain three problems; the first one is called the Schottky 
problem: 

Find an explicit description of a finite basis for the homogeneous ideal of 
A(Tg(l)) generated by those modular forms which vanish at every jacobian point. 

Since the ideal is {0} for g < 3, the first nontrivial case is g = 4; even in 
that case the problem is not quite settled because no proof has yet been 
published for the fact that the Schottky invariant J generates the ideal. The 
second problem is related to Poincaré [21, 22] and also to Kowalevski [14]. 

Find an explicit description of a finite basis for the homogeneous ideal of 
A(Tg(l)) generated by those modular forms which vanish at every reducible 
point. 

The second problem seems much easier than the first problem; and yet 
answers have been given only for g < 3. The third problem is a refinement of 
the main theorem and it is as follows: 

Denote by Az(Tg(\)) the ring consisting of finite sums of modular forms 
relative to Tg(l) with integral Fourier coefficients: show that Az(Tg(l)) is finitely 
generated over Z. 

This problem has to be completed as follows: show also that 
proj(Az(Tg(l))) gives the "scheme of moduli" of all "principally polarized 
abelian varieties" of dimensions at most equal to g. If the problem is settled 
in the so-completed form, then that will imply the irreducibility of the variety 
of moduli over an algebraically closed field of arbitrary characteristic. At any 
rate the third problem has been settled only for g < 2; in those two cases the 
structure of Az(Tg(\)) is also known. 

2-3. We shall now explain a problem of Riemann and Weil; first we shall 
introduce a notation. Let ml9 . . ., mg denote g odd characteristics and put 

D(M)(r) = *-«(3(*mi, • • • , ^ ) / 3 ( z 1 , . . . , Z,))(T, 0), 

in which M stands for the 2g-by-g matrix (mx . . . mg); this is the Nullwert of 
the jacobian of 0mi(r, z), . . . , 9 (T, Z) with the normalizing factor TT~8 and it 
is a holomorphic function on Sg. In a letter dated April 14, 1976 Weil 
proposed the following problem: 

(W-l) Is D(M) always a polynomial in the Thetanullwerte with integral 
rational coefficients! 

At that time he needed an affirmative answer to the following weaker 
problem: 

(W-2) Can D(M) be expressed as a quotient of two such polynomials! 

In the same letter he referred to Frobenius [9] and a quotation by 
M. Noether from Riemann's manuscripts [29, p. 66] for the background of his 
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problems. Noether found in "Nr. 25, Bogen 6" expressions for D(M) as 
"Summen von Produkten" of g + 2 Thetanullwerte for g = 3, 4, . . . , 7; this 
was quoted later in Krazer and Wirtinger [15, p. 772]. Frobenius, on the other 
hand, gave a survey of earlier results, unaware of Riemann's manuscripts, and 
proved such formulas for g < 4 with a final detail for g = 4 left as a 
conjecture; this was nineteen years after Riemann's death. Actually for g == 3, 
4 Frobenius proved the formulas under certain conditions o n m , , . . . , mg. 

Our first result on the above problems was that (W-2) had an affirmative 
answer; an outline of the proof is as follows: if we denote by Q[0] the ring 
generated over Q by the Thetanullwerte, then Q[0] is a Q-structure on C[0]. 
Let Q[0]* denote the integral closure of Q[0]; then a theorem in algebraic 
geometry tells us that the C-span of Q[0]* is the integral closure of C[0], 
which by our theorem in 2-1 coincides with A(Tg(4, 8)); and D(M) is a 
homogeneous element of A(Tg(4, 8)) of degree g + 2. Finally D(M) is in 
Q[0]* because its Fourier coefficients are all integers. 

2-4. We shall next explain our theorem in [13]; we shall use the following 
terminology and notation: a sequence of 2g + 2 characteristics 
ml9 . . . , mg, « „ . . . , ng+2 is called a special fundamental system if mv . . . , mg 

are odd, nl9 . . . , ng+2
 a r e even, and for every a, b, c in the sequence 

e(a)e(b)e(c)e(a + b + c) = -1 

holds. We put M = (mx . . . mg) as before and N = (nl . . . ng+2)l
 w e al s o P u t 

P(N) = # „ , . . . 9^, 

Finally for any integral domain R and any positive integer r we shall denote 
by Or(R) the orthogonal group of x\ + • • • +xr

2 over R and by Gr, II r the 
subgroups of Or(F2) obtained from Or(Z2), Or(Z), respectively, under the 
reduction mod 2; we have denoted by Z2 the ring of 2-adic integers and by F2 

the field with two elements. Then our theorem can be stated as follows: 

(J-l) If D(M) is different from the constant 0 and is a polynomial in the 
Thetanullwerte, then for some N the 2g + 2 columns of (MN) form a special 
fundamental system and the formula 

D(M) = 2 ± P(NV) 
V<EGg+2/Ilg+2 

holds; the expression on the right-hand side is unique. 

Since the formula is unique, all known formulas have to be that formula; 
and by Riemann it has to be correct up to g = 7. We tried, therefore, to 
remove the ugly "if" in our theorem; but we were able to prove the formula 
only up to g = 5 by the method of Frobenius with a consequence of the 
theory of compactifications to give a finishing touch. 

In a paper of 1979, which we completely overlooked, Fay [6] also proved 
the formula in (J-l) up to g = 5. Furthermore by using some properties of 
theta functions with a hyperelliptic modulus he discovered the following 
remarkable fact: 

(F) The formula in (J-l) does not hold f or g = 6. 
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Fay's finding was a relative impossibility. However if we put (J-l) and (F) 
together, we get the following absolute impossibility: f or g = 6 no D(M) 
other than the constant 0 is a polynomial in the Thetanullwerte. Therefore 
(W-l) has a negative answer and the quotations of Riemann by Noether and 
by Krazer and Wirtinger are all wrong! We have tried to remedy this 
unfortunate situation and found a right formulation of (J-l); and it is as 
follows: 

(J-l#) Let X and Y denote the C-spans of all D(M)9s and P(N)9sf respec
tively; then the dimension of X n Y is either 0 or equal to 
CdLrà{Sp2g(^^))/cdirâ{Gg X Gg+2)- Furthermore in the second case it has a 
C- basis consisting of elements of the form 

2 ±D(MU)= S ±P{NV\ 
u^Gg/ug re<?g+2/ng+2 

in which the expressions on both sides are unique up to a simultaneous sign 
change. 

This theorem can be proved in the same way as (J-l); cf. [13, pp. 440-441]. 
The only difference is that we incorporate the results in the Appendix of that 
paper where we observed the "symmetry" in M and N of such formulas. At 
any rate (J-l#) implies (F): if g = 6 or more generally if g > 6, then 
[Gg: Hg] > 2, hence by the uniqueness no D(M) can be written as 2 ± 
P(NV). 

2-5. By what we have explained we have dim(X n Y) > 1 for g < 5 while 
dim(Ar n Y) is either 0 or 

218345 - 7 - 11 • 13 • 17 - 31 - 56,006,655,344,640 

for g = 6; our conjecture is that dim(A" n Y) > 1 for all g. We have ex
amined this conjecture from a representation-theoretic viewpoint by using 
Mackey's theorem. We can easily see that if the conjecture is true for a 
certain g > 2, it is true also f or g — 1. Therefore we may assume that g is 
even; then we can let Tg(X) act on X and Y via the (\g + l)th power of 
det( CT + d) as an automorphy factor. We see that all D(M)9s and P(N)9s are 
eigenvectors for the representations of Tg(2) in X and Y, hence they give rise 
to its characters, say \pM and \pN. The point is that we have 4>M = \pN if and 
only if the 2g 4- 2 columns of (MN) form a special fundamental system. 
Furthermore if we denote such a character by \p, all solutions of \pM> = \p can 
be written as M' = MU mod 2 with U mod 2 in Gg; similarly all solutions of 
\(/N, = \p c a n De written as JV' = NV mod 2 with V mod 2 in Gg+2- Finally if 
we denote by T the subgroup of Tg(l) consisting of all o in 1^(1) satisfying 

xp(aa0a~l) = i//(a0) 

for every a0 in 1^(2), then r / r^(2) is isomorphic to Gg X Gg+2l and we get 
the following theorem: 

(J-2) There exists a degree 1 character x °f r which extends \(/; the 
representations of Tg(\) in X and Y share one and only one irreducible 
representation p with multiplicity one and p is the representation ofTJl) induced 
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by X' Furthermore the [Tg(l): T] elements which appear on the left- and 
right-hand sides of the formula in (J-l*), respectively, form C-bases for the 
unique subspaces of X and Y where the representation p takes place. 

Our conjecture is, therefore, that the two representation spaces are the 
same, i.e., p appears only once in the representation of Tg(l) in X + Y. This 
space is contained in the space, say Z, of all modular forms of weight \g + 1 
relative to Tg(4y 8) and the conjecture will follow if p appears at most once, 
hence exactly once, in the representation of Tg(l) in Z. 

In rounding off this article we shall explain an approach suggested to us by 
Mumford; as we understand it, the idea is as follows: in D(M) and P(N) we 
take the coefficients of M and TV arbitrarily from 1\\]\ if we can find a 
conjectural formula involving such D(M)9s and P(N)'s which is preserved 
under the action of Sp2g(Z[\])> then the problem will be reduced to the elliptic 
case in view of the fact that the Sp2g(Zll]yorbit of V— 1 lg is dense in Sg. 
We might mention that this is one of Poincaré's ideas which we have recalled 
in Part 1. It is very likely that this idea, rediscovered by Mumford, will 
eventually settle the problem. 
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