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POINCARÉ AND LIE GROUPS 

BY WILFRIED SCHMID1 

When I was invited to address this colloquium, the organizers suggested 
that I talk on the Lie-theoretic aspects of Poincaré's work. I knew of the 
Poincaré-Birkhoff-Witt theorem, of course, but otherwise was unaware of any 
contributions that Poincaré might have made to the general theory of Lie 
groups, as opposed to the theory of discrete subgroups. It thus came as a 
surprise to me to find that he had written three long papers on the subject, in 
addition to several short notes. He evidently regarded it as one of the major 
mathematical developments of his time—the introductions to his papers 
contain some flowery praise for Lie—but one probably would not do 
Poincaré an injustice by saying that in this one area, at least, he was not one 
of the main innovators. Still, his papers are intriguing for the glimpse they 
give of the early stages of Lie theory. Perhaps this makes a conference on the 
work of Poincaré an appropriate occasion for some reflections on the origins 
of the theory of Lie groups. 

Sophus Lie (1842-1899) developed his theory of finite continuous transfor
mation groups, as he called them, in the years 1874-1893, in a series of papers 
and three monographs. To Lie, a transformation group is a family of 
mappings 

(la) y = ƒ(*, a\ 

where x, the independent variable, ranges over a region in a real or complex 
Euclidean space; for each fixed a, the identity (la) describes an invertible 
map; the collection of parameters a also varies over a region in some R" or 
C ; and ƒ, as function of both x and a, is real or complex analytic. Most 
importantly, the family is closed under composition: for two values a, b of the 
parameter, the composition of the corresponding maps belongs again to the 
family, i.e., 

(lb) f(f(x9a),b)=f(x,c), 

with 

(le) c = <p(a, b) 

depending analytically on a and b, but not on x. It must be noted that these 
identities are only required to hold locally; in present-day terminology, (la-c) 
define the germ of an analytic group action. 
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Differentiating (la) with respect to the coordinates at of the parameter, Lie 
constructs vector fields 

(2) *i(^-2$,(*)|7 
j °*j 

(Lie's notation), which he calls the infinitesimal transformation of the family. 
That is how he pictures them and, on occasion, calculates with them. The 
foundations of Lie's theory are embodied is his three fundamental theorems. 
The first consists of a differential equation, involving the Xi9 which is 
equivalent to the group property—an infinitesimal version of (lb). This turns 
out to be more delicate than one might expect since Lie, initially at least, does 
not insist on the existence of an identity transformation, or of inverse 
transformations, within the family (1). According to the second fundamental 
theorem, the linear span of the Xt is closed under the Lie bracket, 

(3) [*,,*,] " 2 <****. 
Conversely, any Lie algebra (Hermann Weyl's terminology!) of vector fields 
generates a group in Lie's sense. His arguments are those that one would use 
today: the commutators in the Lie algebra correspond infinitesimally to 
commutators in the group, which leads to the identities (3). On the other 
hand, the one parameter groups generated by a collection of vector fields 
Xv . . . , Xn fit together as a family, (locally) closed under composition, 
precisely when the Xt span a Lie algebra. 

The third fundamental theorem, finally, states that any set of structural 
constants {ciJk}, subject to the obvious necessary conditions, arises from some 
Lie algebra of vector fields, and hence determines a transformation group. In 
other words, every (finite dimensional, real or complex) Lie algebra can be 
realized as a Lie algebra of vector fields. Lie proves the theorem by producing 
a Lie algebra of functions, with respect to the Poisson bracket, which he 
obtains as solutions of a system of differential equations. Some years earlier, 
Lie had published a shorter argument: the given structure constants {cijk) 
determine vector fields 

(4) ^-Sw^' 
and these form a Lie algebra, provided the cijk satisfy the appropriate 
conditions. What amounts to the same, Lie constructs the adjoint group of 
the group whose existence he wants to establish. If the group in question has 
a center of positive dimension, it is not locally isomorphic to its adjoint 
group, and this argument breaks down—a possibility which Lie overlooked at 
the time. 

In Lie's development of the theory, the idea of a group action is of primary 
interest, and the group itself is relegated to a supporting role. However, one 
can easily recover the group itself in Lie's framework: the composition rule 
for the parameter (le), c = <p(a, b)9 in which a may be viewed as the variable 
and b as the parameter, or vice versa, is a transformation group in the sense 
of Lie, a group which acts (locally) simply transitively. Lie calls it the first or 
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second parameter group, depending on whether a or b is regarded as the 
variable. Now one would say that the group acts on itself by left and right 
translation. To Lie, with the algebraic notion of a group so very far in the 
background, it was not obvious that the two actions commute; in fact, he 
credits Engel with this observation. 

Friedrich Engel (1861-1941) had been a student of Felix Klein in Leipzig, 
and in 1884 was sent by Klein to his friend Lie in Norway, where Engel wrote 
his Habilitationsschrift. Two years later, when Lie succeeded Klein in Leipzig, 
Engel accompanied him. Although Engel eventually became quite active on 
his own, at first he seems to have limited himself mainly to functioning as 
Lie's sounding board and selfless secretary—an arrangement with present-
day parallels. The foreword to the first volume of Theorie der Trans-
formationsgruppen describes EngeFs contributions as primarily linguistic, but 
nonetheless valuable because Lie, in his own words, did not "master any of 
the major languages completely". Later, in his introduction to the third 
volume, Lie's credits to Engel become more generous. One may well suspect 
that Engel influenced his teacher to a greater extent than the latter's acknowl
edgements suggest: loose definitions and careless mistakes occur frequently in 
Lie's papers before 1884, but not thereafter. 

To put my brief account of Lie's three fundamental theorems into perspec
tive, I ought to remark that the foundations of the theory of continuous 
groups represent only a small part of his work. Lie saw his theory as a 
powerful tool, with far-reaching applications to the integration theory of 
differential equations and to the most basic problems of geometry. He 
pursued these applications tirelessly, in numerous publications. 

Around 1980, Friedrich Schur2 (1856-1932) published two papers, in which 
he presented an alternate approach to the foundations of Lie's theory. His 
point of departure is the observation, first made by Lie, that there is a 
canonical choice of parameters a in (la), namely the one for which the 
straight lines t->ta correspond to one parameter subgroups. As one would 
say now, Schur parametrizes a neighborhood of the identity in the group by a 
neighborhood of the origin in the Lie algebra, via the exponential map. In 
terms of such canonical coordinates, the compositon rule (lc) also assumes a 
canonical form: qp can be expressed as a convergent power series, whose 
coefficients depend polynomially on the structure constants cok, but which are 
otherwise universal—the Campbell-Hausdorff formula in disguise. Schur's 
power series makes sense and converges near the origin whenever the c^ 
satisfy the obvious conditions, i.e., skew symmetry and the Jacobi identity. In 
particular, this gives a new proof of Lie's third fundamental theorem, one that 
is much more direct and, incidentally, almost simultaneous with Lie's. 

A similar procedure works for any (locally) transitive transformation 
group. After a linear coordinate change, some of the canonical coordinates 
become canonical coordinates for the isotopy subgroup at a given point, and 
the others coordinates for the space on which the group acts. Schur's 

2Not related to Issai Schur, at least not directly. 
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arguments do not use the analytic nature of the transformation group; two 
continuous derivatives are enough. It follows that any transitive, C2 transfor
mation group can be made analytic by means of a suitable coordinate 
change, a fact which had previously been asserted by Lie, without proof, and 
without a specific bound on the number of derivatives. This, of course, is the 
origin of Hubert's fifth problem. 

It is instructive to compare Schur's mathematical style to that of Lie. Schur 
had been a student of WeierstraB in Berlin, and was strongly influenced by 
WeierstraB' insistence on rigor and logical completeness. One can almost 
sense his discomfort with Lie's intuitive reasoning: not once does he refer to 
the "infinitesimal transformations", although he uses the same letters as Lie 
for their coefficient functions. One of Schur's papers begins with a detailed 
proof of the differentiability of solutions of differential equations, as func
tions of the initial conditions. Elsewhere he carefully estimates the radius of 
convergence of a power series in several variables. To Lie, such arguments 
must have appeared overly complicated, and even pedantic. As Engel reports 
in Schur's obituary, Lie and Schur had very different ideas of what was easy 
and what was not. 

Also around 1890, Wilhelm Killing (1847-1923) wrote a series of five 
papers in which he established, or came close to establishing, many of the 
basic structure theorems about complex Lie algebras: the existence of a Levi 
decomposition of Lie algebras that coincide with their own derived algebras, 
criteria for semisimplicity—Killing, in fact, coined the term "semisimple"— 
and most remarkably, the classification of simple Lie algebras. Killing had 
been led to the classification problem by geometric considerations, to a large 
extent independently of Lie's work,3 but in these five papers he generally 
follows Lie's terminology and notation. Killing's most important tool is the 
notion of a root, i.e., root of the characteristic equation 

(5) det(ad X - <o) = 0, 

which Killing writes in terms of coordinates and structure constants, of 
course. Here X is an element of the Lie algebra g, and ad X the infinitesimal 
inner automorphism corresponding to X, 

(6) adX(Y)=[X9Y]. 

Lie had already considered the equation (5) when he proved that every I G 9 
lies in a two-dimensional subalgebra, but it was Killing who first studied the 
root pattern and recognized it as the key to the structure of a Lie algebra. 

Now, ninety years later, one can only marvel at Killing's work, especially 
his list of the exceptional simple Lie algebras, their dimensions and root 
systems, all discovered during the infancy of the subject. The exposition is 
flawed, however, by serious gaps and errors, and is often obscure. No wonder 
his contemporaries remained skeptical, until Elie Cartan, in his thesis, put the 
results on a solid footing. 

3Cf. Hawkins' article on the origin of Killing's work. 
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Killing's severest critic was Lie, perhaps not only for mathematical reasons, 
but also because—hypersensitive, as always in his priority disputes—he felt 
slighted by Killing's references to his own work. Lie made a habit of 
reviewing the work of others on what he called, with proprietary undertones, 
"my theory of groups". One of the pleasures of going back to the early papers 
in Lie theory is to read these astute, but acerbic reviews. About certain 
sections of one of Killing's papers, Lie writes " . . . the correct theorems in 
them are due to Lie, the false ones due to Killing", and in a sweeping 
damnation of several papers by Killing, " . . . (they) contain not so many 
results that are correct and new. Proved, correct and new are even fewer". In 
spite of such harsh language, Lie does acknowledge the great value of 
Killing's results on the structure of Lie algebras. Among other targets of Lie's 
criticism, Schur and Maurer are reprimanded for not following the notation 
which Lie has so carefully chosen, which makes it difficult to see what is 
really new in their writings. Not even Felix Klein, his friend in earlier days, is 
spared. So much has been written by Klein's students and friends about the 
relationship between Lie and Klein, says Lie, that he feels compelled to set 
the record straight: "I am not a student of Klein, nor is Klein a student of 
mine, although the latter might come closer to the truth". He then goes on to 
berate Klein for various offenses. 

Before turning to Poincaré, I should mention two short articles of J. E. 
Campbell (1862-1924), written in 1897, about products of exponentials of 
non-commuting operators. The opening paragraph of the second neatly 
describes their point of view: "If x and y are operators which obey the 
ordinary laws of algebra, we know that eyex = ey+x. I propose to investigate 
the corresponding theorem when the operators obey the distributive and 
associative laws, but not the commutative". The idea of exponentiating a 
vector field, or "infinitesimal transformation", to a "finite transformation" 
already appears in the work of Lie, who considers expressions like 

f+X(f) + ±X\f)+---, 

but does not use the exponential formalism for this purpose. As Campbell 
observes, the product of exponentials of two "small" vector fields X, Y is 
itself the exponential of a vector field Z: 

(7) exeY=ez; 

this follows from the proof of Lie's second fundamental theorem. By labori
ous calculations he then derives a formula for Z, in terms of X> Y, repeated 
bracket operations and certain universal coefficients. Although he mentions 
the word "convergence", his version of the identity (7) has no analytic 
content. He cites Schur's paper because the same universal coefficients occur 
there, but remains silent about the close connection between (7) and Schur's 
proof of the third fundamental theorem. 

Except for a short note on the groups of units in hypercomplex systems,4 

Poincaré's essay "Sur les hypothèses fondamentales de la Géométrie" (1887) 

4I.e., finite-dimensional associative algebras over R. 
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is his first publication to mention the theory of continuous transformation 
groups. After Lobachevsky's description of hyperbolic geometry, the problem 
of characterizing physical space by suitable axioms had become one of the 
grand themes of nineteenth century mathematics. Poincaré approaches this 
problem, in the case of two-dimensional space, with the observation that 
Euclidean, hyperbolic and elliptic geometry have one important feature in 
common: their groups of motion act transitively, with one-dimensional iso-
tropy groups. Using Lie's infinitesimal methods, he classifies the two-dimen
sional homogeneous spaces of three-dimensional groups, up to local equiva
lence. It is then a relatively simple matter to distinguish among the several 
possible cases by various geometric properties. The essay is elegantly written, 
but as Lie points out, with uncharacteristically gentle words, Poincaré seems 
unaware of earlier investigations of a similar nature, in particular Lie's own 
classification of three-dimensional (local) group actions on the plane. 

Perhaps it is not purely coincidental that Poincaré returned to the theory of 
Lie groups only after Lie's death, with a Comptes rendus announcement 
(1899) that outlines a proof of the third fundamental theorem. The details 
follow a few months later, in the form of a paper dedicated to Sir George 
Gabriel Stokes, on the occasion of his eightieth birthday. In the interval, 
Poincaré must have learned of Schur's proof and Campbell's notes: he cites 
both, remarks that his own results, which overlap theirs to a considerable 
extent, are not as original as he had thought, and expresses the hope that his 
arguments contain enough new ideas to merit publication. 

The paper begins with a discussion of the exponential formalism for vector 
fields. Every "infinitesimal transformation" A" in a continuous transformation 
group exponentiates to a one parameter subgroup 

and these one parameter subgroups generate the group. Campbell's identity 
(7) thus makes it possible to reconstruct the group law from the bracket 
operation on the Lie algebra. The third fundamental theorem follows, pro
vided Campbell's formal series is known to converge. This, Poincaré points 
out, is also the basic mechanism of Schur's proof. 

To give concrete meaning to the identity (7), Poincaré in effect introduces 
the universal enveloping algebra U(Q) of a Lie algebra g: it consists of all 
"symbolic polynomials", i.e., formal noncommutative polynomials in the 
generators of g, on which he imposes the identifications forced by the 
equalities 

(8) XY - YX -[X, Y] = 0, 

with X, Y G g. Because of (8), a homogeneous nth degree polynomial is 
equivalent, as symbolic polynomial, to a symmetric homogeneous nth degree 
polynomial, plus a polynomial of lower degree. This procedure, repeated 
inductively, makes every symbolic polynomial equivalent to a symmetric 
polynomial. Less obviously, the symmetric representative is unique—that is 
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the main substance of the Poincaré-Birkhoff-Witt theorem: in present-day 
terminology, the "symmetrization map" 

S(Q)-*U(Q) 

from the symmetric algebra of Q to U(Q) defines a linear isomorphism.5 

Poincaré's proof of the uniqueness of the symmetric representative is 
complicated and leaves much unsaid. As an illustration of its main idea, let us 
consider a symmetric polynomial P, of degree three, which can be made 
equivalent to zero without raising its degree. Expressed in terms of a basis 
{Xv . . . , Xn} of g, P takes the form 

P = 2 <&(*& - XjX, - [x„ Xj])xk 

(9) + 2 V * . ( « " xkXj - [XP Xk}) 

+ ^cy{XiXj-XjXi-[Xi,XJ]). 

Since P is symmetric, so are its homogeneous components P3, P2, P\. On the 
other hand, the leading component 

^3 = i» aijk\XiXjXk ~~ XjXiXfr) 4- 2a biJk\XiXjXk — XtXkXj) 

vanishes when it is symmetrized; hence P3 = 0. This can happen only if the 
six terms 

\XfXj — XjXt — \_Xi9 Xjj)Xk9 —X\XjXk — XkXj — [XJ9 Xk^)9 

yXj^k ~~ %kXj — L̂ /> ^ikj)^i» ~Xj\XkXi ~~ XiXk ~~ [Xk> Xi]h 

\Xk%i ~ XtXk ~[Xk, Xt\)Xp —Xj^XfXj — XjXf —[XtiX/D 

contribute equally to the first two sums in (9). Because of the Jacobi identity, 
these add up to 

Xt[Xj, Xk] -[Xj, Xk]X, -[X„ [Xp Xk]] 

+ Xj[Xk, X,] - [Xk, X,]Xj - [Xj, [Xk, X,] ] 

+ Xk[Xi,XJ] -[XpXj]Xk -[Xk, [X„Xj]], 

which is quadratic, equivalent to zero, and thus can be absorbed by the third 
sum in (9). In other words, P is equivalent to zero already as a second degree 
polynomial. With considerable effort, Poincaré carries out the analogous 
argument for symmetric polynomials of arbitrary degree: if such a poly
nomial is equivalent to zero, its degree can be reduced by one; the theorem 
follows by induction. 

The universal enveloping algebra and Poincaré's description of its structure 
were forgotten for almost forty years. In 1937, Garrett Birkhoff and Ernst 
Witt rediscovered Poincaré's result independently, in its most general version, 
needless to say—for possibly infinite-dimensional Lie algebras, over fields of 

5Over ground fields of nonzero characteristic the theorem must be stated slightly differently. 
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arbitrary characteristic. Apparently it was Cartan-Eilenberg, in their book on 
homological algebra, who first affixed Poincaré's name to the theorem. 

To Poincaré, Campbell's formula is an identity in the universal enveloping 
algebra. For I j G g , the product (Xm/m\)(Yn/n\) can be expressed 
uniquely as a sum of homogeneous, symmetric polynomials in the generators 
of g, of degree k < m + n9 

— — = y z 
m. n. k<m + n 

Hence, in a formal sense, 

(10) « V - S Z i , 
k 

where 

(11) Z r ^ Z ^ 

is a formal power series in the variables X and Y, with values in the space of 
symmetric, homogeneous, kth degree polynomials. The first term 

(12) Z, - 2 Zm(„,, 
m,n 

plays a special role; for algebraic reasons, it must be a sum of repeated 
brackets in X and Y. Poincaré's version of Campbell's formula has three 
different aspects: 

(a) the product (10) is an exponential series, which means that Zk — 
Zf/A:!,forA:==0, 1, 2, . . . ; 

(b) the series (12) converges for small X and Y; 
(c) the series (12) can be written down explicitly. 

For the purpose of proving Lie's third fundamental theorem, (c) is irrelevant, 
and Poincaré pays little attention to this problem, although the answer 
follows easily from his methods. 

The main tool of his proof of (a) and (b) is a differentiated version of 
Campbell's formula; in symbolic notation, 

(13) exeÔY - ex+dx
9 withôF = ^— ÔX 

ad A 

(cf. (6)). Poincaré gives two separate derivations of the identity (13), one 
straightforward, by direct calculation with power series, the second a rather 
curious argument: If 9 is known to be the Lie algebra of a group, Campbell's 
formula and its infinitesimal analogue (13) follows from Lie's second funda
mental theorem. The auxiliary Lie algebra g, with generators 
{X, Xl9 . . ., Xn) and relations 

(a) [X,Xi]=^lciJXJ, 

(b) [XitXj]-0, 

is center-free for a generic choice of the constants cip and hence is the Lie 
algebra of a linear group, by Lie's early proof of the third fundamental 
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theorem. In g, then, the identity (13) holds—even if the cv fail to be generic, 
as can be shown by a simple degeneration argument. To get the same 
statement in g, Poincaré specializes Xv. . . , Xn to a basis of Q and chooses 
the constants ctj so that (14a) remains an equality. The second set of relations 
(14b) may be violated in Q, of course, but the commutators which are not 
specified by (14a) only have a second order effect on Campbell's formula, 
and hence disappear from the differentiated formula (13)! 

To interpret (13) as an analytic identity, Poincaré draws on the residue 
calculus. If ^ is a polynomial, 

$(ad X) - ^ L ƒ ( | _ a d x y l 9 ( t ) di 

W m\ c 
= -^fcf(adX - QF{Q-lm rffc 

with F(£) = det(ad X — £) and cf( . . . ) = cofactor matrix of ( . . . ); the 
integration extends over a circle, centered at the origin, and large enough to 
enclose the roots £1? . . . , £N of F. The same formula applies to any holomor-
phic function 4>, whose Taylor series 

*(*) = a0 + a& + a2£
2 + • • • 

has radius of convergence greater than 

Rx = maxfl^, . . . , | ^ | ) , 

because 4> can then be approximated by polynomials on a suitable circle of 
integration. In this situation, the formal sum 

$(ad X) = a0l + ax ad X + a2(ad X)2 + • • • 

converges and equals the integral (15). If <b has no zeroes on the closed disc 
of radius RX9 the reciprocal series ^>_1(ad X) also converges, to the inverse of 
the operator 3>(ad X), 

(16) ^ ( a d X ) " 1 = <J>_1(ad X). 

In particular, both (13) and the inverted form of that identity, 

(17) «r-_Ji£_,r, 

have a definite analytic meaning, the former for all X, the latter whenever the 
eigenvalues of ad X lie inside the disc of radius 2*n. 

As the final step of the proof, Poincaré recovers Campbell's formula from 
its differentiated version by integration. Because of (13, 17), the relation 

exetr = ez«) 

is equivalent to the differential equation 

(18) Z ' (0 = a d Z ( ^ t , Y, 

with initial condition Z(0) = X. Any formal solution of (18) converges near 
t = 0, and hence on the interval [0, 1] if only X and Y are small enough; 
Z = Z(l) satisfies Campbell's formula (7) both formally and analytically. 
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I want to emphasize precisely what Poincaré proves. The identity (7) is first 
of all a formal identity, in the universal enveloping algebra of a specific Lie 
algebra g, which determines Z as a series in X, Y, and their repeated 
brackets; the Poincaré-Birkhoff-Witt theorem ensures the uniqueness of Z. 
Secondly, this formal series converges near X = Y = 0, to an analytic func
tion 

(19) Z = <p(X, Y). 

Both statements involve the Lie algebra structure, but make no reference to a 
group with Lie algebra Q. Finally, the function (19) defines a simply transitive 
group in Lie's sense—the group property follows easily from the associativity 
of the multiplication in £/(g). 

The residue formula plays a more prominent role in Poincaré's arguments 
than my summary might suggest. The choice of method is characteristic: to 
Poincaré, the third fundamental theorem amounts to an application of the 
residue calculus, to Lie, it is the solution of a partial differential equation, and 
to Schur, under the influence of Weierstraft, an explicit power series in several 
variables! 

As for the later history of the Campbell-Hausdorff formula, Baker pub
lished a new proof in 1905, very much in the spirit of Campbell's original 
proof, but with a more elaborate formalism taking the place of lengthy 
calculations. Baker saw the connection between the formula and Schur's 
proof of the third fundamental theorem, but he does not mention Poincaré's 
work on the subject. Hausdorff, a year later, said everything about the 
Campbell-Hausdorff formula that needs to be said. His precision and general
ity satisfy even Bourbaki—who faults Campbell, Poincaré and Baker for 
being vague. Like Campbell and Baker, Hausdorff focusses on the algebraic 
aspects of the formula, but he also establishes the convergence of the formal 
series by quoting Poincaré's argument. He recounts the previous history fully 
and accurately; in particular, he characterizes Poincaré's version as the 
specialization of his own universal identity to the enveloping algebra of a 
specific Lie algebra. 

In 1901 and 1908 Poincaré published his last two papers on Lie groups: 
long, rambling discussions of such topics as the exponential and logarithm 
maps, the adjoint group of Lie algebra, and the relationship between a group 
and its adjoint group. It was Lie who first introduced the adjoint group and 
gave it its name. The statement that the adjoint group is the homomorphic 
image of any group with the same Lie algebra amounted to little more than a 
tautology for Lie, since he defined the notion of homomorphism purely in 
terms of the structure constants. Poincaré, on the other hand, displays the 
adjoint homomorphism as a map, with algebraic properties, by writing down 
formulas like 

(20) e~xYex = - ~ fe'*F(£Vl cf(adX - Ç)Yd£ 

It must be borne in mind that Poincaré adopts Lie's definition of continuous 
group; the natural domain of the adjoint homomorphism is the parameter 
group: the set of symbols {e*!^ E ©}, endowed with the (local) composition 
rule (19). 
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The linear transformations Y\-±e~~xYex, which generate the adjoint 
group, visibly preserve the Lie algebra structure of Q. From this observation 
Poincaré deduces certain results of Killing about the root space decomposi
tion. For example, if Yl9 Y2 E Q correspond to roots co1? <o2 of X, the bracket 
[Yv Y2] belongs to the root cox + w2, or vanishes if c^ + co2 fails to be a root 
—not a deep fact, but less evident before the algebraic notion of the adjoint 
homomorphism became common currency. 

As a complex analyst, Poincaré is tempted to approach various global 
questions from the point of view of analytic continuation. The formula (20) 
exhibits the adjoint homomorphism as a holomorphic map; if g is center-free, 
this map has an inverse near X = 0 (the logarithm map of the adjoint group, 
in effect), which can be analytically continued. Similarly, the composition 
rule (19) is defined initially near X = Y = 0, but extends to a multiple-valued 
map: the identity ez = exe Y can be solved locally for Z in terms of X and Y, 
provided exp has maximal rank at Z; <p is well behaved near such points, and 
ramifies at others. The roots of Killing's equation (5), finally, are multiple-val
ued functions on the Lie algebra. Poincaré studies the analytic continuations 
of these three types of functions in great detail, which quickly leads him to 
consider the center of the group—a vexing problem at a time when the notion 
of a global Lie group had not been defined. 

The discussion of the center and of the multiple-valued composition rule 
make Poincaré's papers on Lie groups frustrating for a present-day reader. 
Bourbaki, in his historical notes, dismisses them as hastily written; he criti
cizes Poincaré for asserting in some places that the exponential map is 
surjective, and elsewhere giving counterexamples. However, the apparent 
contradiction can be resolved. When Lie talks of a "group with structure 
constants ciJk", he means a transformation group; he refers to the underlying 
(local) abstract group as the parameter group. Poincaré accepts this conven
tion in principle, but in practice considers only the parameter group, the 
adjoint group, and sometimes also other linear realizations. Unlike Lie, he 
regards the parameter group as a global object, which is canonically attached 
to the Lie algebra; indeed, the parameter group really is the Lie algebra, 
equipped with the multiple-valued composition rule (19). The parameter 
group plays the role that one assigns now to the universal covering group: it 
maps homomorphically to any (transformation) group with the same Lie 
algebra—just another way of saying that it is the underlying abstract group of 
such a transformation group. In this setting, homomorphisms may have 
singularities and need not be globally defined. Thus it can happen that the 
exponential map of a linear group fails to be surjective, even though its 
underlying abstract group, or parameter group, has a surjective exponential 
map as a matter of definition. 

One of Poincaré's examples is especially revealing. He considers two 
infinitesimal rotations X, Y in the group SO(3), about axes lx, lY in general 
position, with X normalized so that ex represents a full rotation, through an 
angle 2TT. In SO(3), ex equals the identity, but not in the parameter group. 
The product exe Ye~x is a rotation about the axis exlY = lY, through the same 
angle as e y, hence 

exere-x-er. 
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On the other hand, the two rotations eYexe Y and ex have unequal axes in 
general, which means that 

eYexe~Y ^ ex, 

as elements of the parameter group. A paradox, but not a contradiction: the 
group laws are only required to hold locally, after all. 

A satisfactory explanation became possible when the concepts of global Lie 
group and universal covering group were introduced. Both of these had to 
await the definition of a manifold, which appeared implicitly, at least, in 
Hermann Weyl's Die Idee der Riemannschen Flàche in 1913, a year after 
Poincaré's death. 
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