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FINITE LINEAR GROUPS WHOSE RING 

OF INVARIANTS IS A COMPLETE INTERSECTION 

BY VICTOR KAC AND KEMCHI WAT AN ABE 

ABSTRACT. The celebrated Shephard-Todd-Chevalley theorem says that for a 
finite linear group G operating on the «-dimensional complex vector space the 
ring R of invariant polynomials is a polynomial ring if and only if G is generated 
by pseudoreflections (g G G is a pseudoreflection if rank(g - I) = 1). In this note 
we give a simple topological proof of the following statement : 

If R has m generators such that their ideal of relations is generated by 
m — n + s elements, then G is generated by those g £ G such that rankfe - I) 
< j + 2. 

In the case s — 0 this gives a necessary condition for R to be a com
plete intersection. Our argument also gives a new simple proof of the "only if" 
part of the Shephard-Todd-Chevalley theorem in the case of an arbitrary ground 
field. 

Let k be a field and let G be a finite subgroup of GL(n, k). The group G 
acts naturally on the polynomial ring S = k[xx, . . . , xn] and we put R = Sfi 
to be the invariant subring of G. We say that R is a polynomial ring if R is gen
erated by n (algebraically independent) elements, and that R is a complete inter
section if R is isomorphic to k\yl9 . . . ,yn+r]/J, where / is an ideal generated 
by r (= emb dim R - dim R) elements. In this paper we prove the following 

THEOREM A. If R is a complete intersection, then G is generated by the 
set {g G G| rankfe - 1 ) < 2} (where I is the identity matrix). 

The proof is based on two simple topological lemmas. We can assume that 
the ground field k is algebraically closed. 

Let ƒ: Spec(5) —• Spec(#) be the quotient morphism. Let X' and Y be 
the henselisations of Spec(5) at 0 and of Spec(jR) at /(O) respectively and ƒ': 
X* —* Y the associated morphism. Then the action of G on Spec(S) lifts to X' 
and/ ' is the quotient morphism. We use henselisations in order to deal with 
simply connected (i.e. without nontrivial étale coverings) schemes X' and Y. If 
char k = 0, then SpecCS) and Spec(R) are simply connected and the henseHsation 
is not necessary. 

LEMMA 1. Let Y be a simply connected scheme, Z a closed subscheme and 
Y = Y - Z. If Y is a complete intersection and codim Z > 3, then Y is simply 
connected. 

PROOF. The proof follows from [2, X, 3.3 and 3.4]. 
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REMARK 1. The conclusion of Lemma 1 holds if instead of Y to be a 
complete intersection and codim Z > 3, we require that Y is regular and 
codim Z > 2. 

LEMMA 2 (VINBERG). Let X be an integral scheme and G a finite sub
group of kutk{X). Let Y = X/G and f:X —> Y be the quotient morphism. 
For a closed point x of X let Gx denote the stabilizer of x. If Y is simply 
connected, then G is generated by all Gx

9s. 

PROOF. Let H be the subgroup of G generated by all Gx's; it is a normal 
subgroup. Then for the action of G/H on X/H any g =£ e has no closed fixed 
points and by [1, I, 10.11], the morphism X/H —* Y is an étale covering. By 
our assumption, we have G — H. 

PROOF OF THEOREM A. For g G G let Lg denote the subscheme of fixed 
points of g on X4. Let L be the union of all L 's with codim L > 3, and put 
X — X!~L,Z- f(L) and Y = Y* - Z. Note that F* is a complete intersection 
since Spec(#) is, and Z is a closed subscheme in Y of codimension > 3. Further
more, X is an integral scheme with the induced G-action, Y = X/G, and Y is 
simply connected by Lemma 1. Hence, by Lemma 2, G is generated by all Gx's, 
x G X. But by the definition of X, g G Gx for some x G X if and only if 
codim Lg<2 or, equivalently, rankfe - 1 ) < 2. 

REMARK 2. 7? is a complete intersection for any G C GL(2, C) (F. Klein). 
It is not difficult to construct an example of a finite group G C £7,(3, C) gener
ated by two matrices A1 and A2, such that rank(ylI. - 7) = 2, / = 1,2, but 7? is 
not a complete intersection [7]. 

REMARK 3. Our argument together with Remark 1 gives a short topological 
proof of the "only if' part of the Shephard-Todd-Chevalley theorem [3, 5] 
over any ground field k: If R is a polynomial ring, then G is generated by 
pseudoreflections. It is not difficult to show that, furthermore, Gx is generated 
by pseudoreflections for any x. The first author takes this opportunity to sug
gest the following risky conjecture: Conversely, if Gx is generated by pseudo-
reflections for any x, then R is a polynomial ring. 

If the ground field is the field C of complex numbers, the topology of 
Spec(7?) is better known and we can prove the following more general theorem. 

THEOREM B. Let G be a finite subgroup of GL(n, C) and S = C [xt,..., xn ]. 
IfR=SG has m generators such that their ideal of relations is generated by 
m-n + s elements, then G is generated by those g G G such that rankfe - T) < 
5 + 2. 
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PROOF. We set X* = Spec(5), Y1 = Spec(#)- By the same argument as 
above, we have only to prove that Y = Y - Z is simply connected if codim Z < 
s + 3, under our assumption. The corresponding generalisation of Lemma 1 in 
the complex case has been recently proved by Goresky and Macpherson [4]. 

REMARK 4. We do not know whether Theorem B is true for an arbitrary 
ground field. 

Note, finally, that we can strengthen Theorem A (and in a similar way, 
Theorem B) as follows (cf. Remark 3). 

THEOREM C. If R is a complete intersection, then each Gx is generated by 
{g£Gx\ rankfc-7)< 2}. 

PROOF. Let X = Spec(£), Y = X/GX and denote by TT: X —• Y the quo
tient morphism. Then the morphism Y —» X/G is e'tale at n(x) by [1,1, 10.11], 
Hence the local ring at n(pc) E. Y is a complete intersection, and we can apply 
Theorem A. 

REMARK 5. The converse of Theorem C is false (cf. Remark 2). 
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