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mathematical development). These provide surveys with pleasant points of 
view and could be used as textual material in a number of contexts (e.g. 
undergraduate applied mathematics students in some cases) where there would 
be definite benefits. Additional less standard, more modern types of applica
tions (such as the analysis of pair-wise ratio comparisons to establish cardinal 
rankings or in graph theory and combinatorics [4]) would also have been 
welcome in this part of the book. 

Any treatment of nonnegative matrices would be highly author-dependent, 
and the present work, which uniquely reflects the authors' tastes, makes a 
definite contribution. However, there are other possible developments of this 
subject and a further book in the field should not be precluded. An alternative 
would have been a work less general but more primarily, deeply and directly 
about nonnegative matrices and more internally developed. Such might be 
more useful to the casual applier and also allow fuller internal development of 
the fancier topics for the mathematician. Perhaps that will come sometime. 
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Minimal factorization of matrix and operator functions, by H. Bart, I. Gohberg 
and M. A. Kaashoek, Operator Theory: Advances and Applications, 
Birkhâuser Verlag, Basel, Boston, Stuttgart, 1979, v + 227 pp., $17.50. 

This is a monograph on system theory and a branch of operator theory 
known as operator models. It makes basic contributions to both subjects and 
should be widely read by people in both areas. System theory is a branch of 
theoretical engineering while model theory evolved as pure mathematics. In the 
early 1970's it was shown that the two independent subjects are fundamentally 
equivalent. "Equivalent" is a blurry word to use in comparing two large highly 
developed fields, and there were discrepancies. Roughly speaking, system 
theory was primarily finite dimensional, while model theory was well devel
oped in infinite dimensions. On the other hand, model theory worked smoothly 



236 BOOK REVIEWS 

for what amounts to energy conserving situations but became involved other
wise, while system theory needed no such restrictions; so structurally speaking, 
system theory was more general than operator model theory. This is the case 
partly because model theory is a theory of unitary equivalence, while system 
theory allows equivalence up to similarities. Once people saw the connection 
between systems and models, a general theory containing both developed 
quickly. 

This unified theory contained only the most nebulous structure of the two 
subjects. Since the motivation behind the subjects was entirely different, 
specific results in the two areas focused on very different issues. For example, 
there was great attention to least squares quadratic control among system 
theorists and nothing analogous in operator theory. On the other hand, the 
main theme in model theory went like this: Given an operator A, one 
associated to it a matrix (or operator) valued function 0A(z) (z G C), called its 
characteristic function. Factorizations of 0A correspond to invariant subspace 
decompositions of A. This correspondence between factorizations and in
variant subspaces was one of what I consider to be the three cornerstones on 
which model theory rests. The very surprising thing is that as of 1970 there was 
no counterpart of this basic fact in system theory. Various people (under the 
influence of model theory) looked at implications of this principle for particu
lar systems through the mid-seventies. However, the general principle, which 
cut to the core of the matter, was not complete until Bart, Kaashoek, Gohberg, 
and Van Dooren added more detail to a result announced by Sahnovic 
(Doklady '76). The monograph under review is essentially a description of the 
many ramifications of this simple, beautiful principle for system theory, 
operator model theory, and for the study of factorization of matrix rational 
functions. I certainly feel that it is a substantial contribution to each of these 
areas. 

Recall that a system is simply a set of first order differential equations 

(*) ^p- = Ax(t) + Bu(t), x(0) = 0, 

y(t) = Cx{t) + Du{t). 

Here one thinks of the driving term u{t) as the input to a box at time t, y(t) as 
the output of the box, and x(t) as the internal state of the box. Typically u and 
y take values in a vector space C* of much lower dimension than the image 
space Cn for x. In studying this system one usually works with Fourier 
transforms and easily finds the relation between input and output to be 
y(p) — T(p)û(p), where T(p) = D + C(p — A)~lB. Usual conventions are 
to call the quadruple of matrices [A, B,C, D] a system and T its transfer 
function. There are several branches of system theory. The largest one is control 
theory: How do we select the input u(t) to make the state x(t) do what we 
want? This is not the concern of the book under review so we move on. 
Another branch of system theory is realizability theory: Given some input-
output behavior how do we find a system which has it? For example, in circuit 
design one typically is given certain specs and must build a circuit which meets 
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those specs; to wit, given T(p) build a system which has transfer function 
equal to T(p). 

One way to proceed is to take the given function T(p) and decompose it 
into much simpler functions Tj(p). If Tj(p) is very simple, then it is very easy 
to find a system <3l7 (or circuit) with transfer function Tj(p). If the relationship 
between T and its constituent Tj 's is not complicated, then there is probably an 
easy way to connect the 91 .'s together to get a system <3i whose transfer 
function is T. Thus various decompositions of T play an important role in 
"realizing" the function Tj. Whereas factorization T — TXT2 is a basic type of 
decomposition (used, for example, in the Darlington approach to filter design), 
it is natural to ask what factorization of T means in terms of a system 
[A, B,C9 D] whose transfer function is T. In other words, to what does 
factorization of T correspond in terms of the associated system (*) of differen
tial equations? 

The factorization principle describes this correspondence. It is simple enough 
that it can be stated immediately. It says that for a "minimal" system with 
invertible D, 

THEOREM. Each "minimal" factorization T2(p)Tl(p) — T(p) corresponds to 
a decomposition Cn = c> x + c>2 of Cn m*° nonintersecting subspaces Sj and S2 

with the invariance properties 

AS} C §,, [A - BD~XC}%2 C §2 . 

The converse is also true. 

In the rational case, a factorization being minimal roughly means that there 
is no zero-pole cancellation between the factors. 

The correspondence in the theorem is simple and explicit. It has the 
appealing property that the poles of Tx lie on the opposite side of a contour C 
from those of T2 if and only if the spectrum of A |§ is on the opposite side of C 
from spectrum A — BD~lC |§ . So the theorem is an excellent tool for studying 
"spectral" factorizations of a given T, namely, factorizations whose factors 
have poles in prescribed regions. 

The first chapter of the book is especially elegant. It presents the factoriza
tion principle, the relation to spectral factorization, and applies this to various 
classical operator models such as the Livsic-Brodskii model and the Krein 
model (a variant on the Nagy-Foia§ model), as well as to more recent 
polynomic models. By the end of the chapter one has a unified approach to 
factorization in all of these models. 

Besides factorization versus invariant subspaces, there remain two corner
stones of model theory, system theory, and the newer unified theory. The first 
starts with a matrix valued analytic function T and tells how to construct a 
system having T as its transfer function. The second says that the transfer 
function determines a "minimal" system up to "similarity". Chapters II and III 
treat these issues thoroughly and bring some new ideas which add more detail. 
Thus, the first three chapters together give a solid introduction to the basics of 
model and system theory. The remaining two-thirds of the book concentrates 
on applications of Theorem I. 
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A major issue (2^ chapters worth) is the stability of factors Tx and T2 with 
respect to perturbations of T. Conversion to an invariant subspace problem 
yields satisfactory results on the issue of which T have stable factorizations. 

An intriguing observation is an explicit correspondence between factoriza
tions of T and the solutions of an algebraic Ricatti equation. They use this to 
study stable solutions to the Ricatti equations. Related relationships I have 
seen (in the engineering literature) are in comparatively special circumstances. 

Most of the material in the book fits easily into infinite dimensional space 
and that is where it is done. The authors are consequently able to study certain 
integro-differential equations. In particular their methods apply to the trans
port equation (of nuclear physics) and a chapter is devoted to this. This 
approach to the transport equation has proved to be valuable and the inter
ested reader should see a forthcoming book on transport equations to appear 
in the same Birkhàuser series. 

There are many other nice ideas which cannot be mentioned in a brief 
review. In summary, the first third of the book sets out principles of model and 
system theory of such general interest that it could serve as an introduction to 
many readers. It does not give physical motivation or many references to the 
systems literature, so the beginner would want a more engineering oriented 
supplement (e.g. T. Kailath's book). Also to fill in more model theory, one 
could see either the definitive book of Nagy and Foia§ or the more informal 
account of the Nagy-Foia§ theory, by R. G. Douglas, which is contained in the 
volume of the MAA studies series which C. Pearcy edited. Also there is 
Brodskii's book. The remainder of the book is also accessible with little 
background and contains much fine mathematics. 
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Spline functions: Basic theory, by Larry L. Schumaker, Wiley, New York, 1981, 
xiv + 553 pp., $42.50. 

A polynomial spline function results from splicing polynomial arcs in such a 
way that the resulting function is sufficiently smooth. In more precise lan
guage, a polynomial spline function of degree k > 0 is a real function defined 
by piecewise polynomial components of degree < k whose derivatives through 
order k — 1 are continuous. The juncture points are commonly referred to as 
(simple) knots in the literature. Central to the study of these functions is the 
class of minimal support splines or B-splines. It is found that the smallest 
possible number of knots of a spline of degree k whose support is a compact 
interval in the interior of its domain is k + 2. Such splines are uniquely 
determined up to constant multiples. They are ideal basis functions and can be 
calculated recursively by formulas which express a 2?-spline of a given degree k 
as a convex linear combination of two i?-splines of degree k — 1. 


