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THE MAY-WIGNER STABILITY THEOREM 

FOR CONNECTED MATRICES 

BY HAROLD M. HASTINGS1 

In 1972 R. M. May [4], following empirical results of M. R. Gardner and 
W. R. Ashby [2], sketched a proof of the following asymptotic stability theorem 
for large random linear differential systems: 

(1) dx/dt = Ax. 

May used deep results of E. P. Wigner [7], the "semicircle law" for eigenvalues 
of random symmetric matrices; see also Mehta [6]. 

MAY-WIGNER STABILITY THEOREM. Let B be an n x n matrix with 
n2C (0 < C < 1) randomly located nonzero entries, each chosen independently 
from a symmetric distribution with variance a2. Let A = B - I, and let 
P(a, n, C) be the probability that the corresponding differential system (I) has a 
stable equilibrium at 0. Let e > 0. Then P(a, n, Q —• 1 as n —• °° provided 
a2nC < 1 - e; conversely, P(a, nt C) —• 0 as n —• °° for ct2nC > 1 + e. 

This result provided a basis for studying the stability of neutral models in 
both cybernetics [2] and ecology (May [5] and references therein). Unfortunate
ly Wigner's results are extremely complex, and may not apply to all random 
matrices (G. Sugihara, private communication, see also [6, p. 150]). We there
fore sought a conceptually simpler proof. 

We announce here a direct proof for matrices with connected underlying 
graphs. More precisely, the underlying graph of A (with one edge joining i and 
f ifAy or Ajt is nonzero) is asymptotically almost surely connected if 

C > ( 1 +e)log«/«, 

and asymptotically almost surely not connected if 

C < ( 1 -e)\ogn/n 

for any fixed positive e, (Bollobas [1, p. 143]). We assume the former condition 
holds; in particular the theorem holds for any constant C. 
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There are three main steps in the proof. First, the columns of A approach 

orthogonality rapidly as n —• °°. Secondly, for ot2nC < 1 - e, e fixed and pos

itive, each column has Z2 norm asymptotically almost surely less than 1 - 3e2/4; 

a suitable converse bound also holds <x2nC> 1 + e. Finally, the Gerschgorin 

bound on the largest eigenvalue of a matrix is readily extended to a Z2 analogue 

for matrices with orthogonal columns. 

A detailed proof and ecological applications and extensions will appear 

elsewhere [3] . We thank Drs. R. M. May and G. Sugihara for helpful conversa

tions. 
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