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ON PUISEUX SERIES 
WHOSE CURVES PASS THROUGH AN INFINITY 

OF ALGEBRAIC LATTICE POINTS 

BY DAVID LEE HILLIKER AND E. G. STRAUS1 

1. Introduction. Runge [4] proved that certain binary Diophantine equa
tions have only finitely many solutions. Here we give an argument concerning 
lattice points represented by Puiseux series which proves Runge's Theorem 
and permits a generalization which shows that there are only finitely many 
solutions in integers—subject to suitable restrictions—of an algebraic number 
field. As in the case of Runge's Theorem upper bounds for the absolute value 
of each solution can be computed, by the methods of the proof. 

Let 
d\ d,2 

F{x,y) = £ £ dij-xY e C[z,y] 

be of degree d\ and cfo in x and y, respectively. Let X > 0. We define the 
\-leading part, F\(x,y), of F(x,y) to be the polynomial consisting of the sum 
of all terms aijXly3 of F(x, y) for which i + \j is maximal, for that fixed value 
of X. We define the leading part, F(x,y), of F(x,y) to be the sum of all such 
terms as X varies. 

We say that an irreducible polynomial 

F(x,y)€Z[x,y] 

satisfies Runge's Condition unless there exists a X so that F = F\ is a constant 
multiple of a power of an irreducible polynomial. 

Runge's Theorem can now be conveniently formulated: If F(x, y) satisfies 
Runge's Condition, then the Diophantine equation F(x, y) = 0 has only finitely 
many solutions (x,y) G Z2. 

Let L denote an algebraic number field of degree t. Let the conjugates of 
OeLbe denoted by 9^ = 0, 0™,6&\...,flW, and let 

[0|= max IflWl. 
l<T<tl I 

Denote the ring of algebraic integers in L by OL- We say that (x, y) € 0\ is an 
Lrlattice point. We consider certain analytic functions y = f(x), of a complex 
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variable x, represented by Puiseux series 

ƒ(*)= f ) anx-n'<, 
n=—m 

m, e G Z, a_m # 0, e > 0, in a neighborhood of infinity, \x\ > R. 

THEOREM 1. Let y = f(x) where the Puiseux coefficients an, for n< N, 
lie in an algebraic number field K of degree s. Let M be the number of pairs 
of integers (/-*, v) with 

1 < fj, < umie, 1 < v < se. 

Consider L-lattice points (x, y) that satisfy 
(i) y(To) = /(x(r°)), for some r0 with \xr°\ > \x\Cl, 

(ii)^1<c2RC3,c5 

(iii) \ï/x\<c4\x\Cs, 
where ci, 02,03,04, and c$ are positive constants with 

c5 <ci /es( t - l ) . 
Suppose that 

N > Me + m(se - l)/(ci - c5es(t - 1)), 
N > cse/cs, N > mjo^. 

Then all these L-lattice points (x,y) satisfy an equation P{x,y) = 0 where 
P(x, y) G Z[x, y], deg^ P < se, and P\ is a monomial for all X # m/e. For X = 
m/e, P\ is a constant multiple of a power ofx times a power of an irreducible 
polynomial in Z[x,y]. Moreover, P = Pm/e. If there is an infinity of L-lattice 
points satisfying (i), (ii) and (iii), then P(x, f(x)) = 0. 

We deduce, in [3], Runge's Theorem, as a corollary of Theorem 1, in the 
case t = 1. Bounds for \x\ and \y\ are also computed in [3]. 

For general t we deduce, in [3], the following generalization of Runge's 
Theorem, as another corollary of Theorem 1. 

T H E O R E M 2. LetF(x,y) be irreducible in Z[x,y] and set 

F{x,y)=Y,xifi{y)=Y,yigj{x) 
2=1 i = o 

where 
V W 

9d2 (x) = a I ] (x - arr, ƒ* (tf) = b ft (y - /?.)"• 
r = l 3=1 

and assume that there exist infinitely many L-lattice points (x,y) G 0\ which 
satisfy F(x, y) = 0 and 

H m<cs\x]l/{t-l)dl, m<cs\y]1/(t-1)dî, 
where CQ is a positive constant. Assume one of the following conditions for 
these L-lattice points: 

, ) \l/{x-ar)\<c7\y\1 Mr~C8, r = l,2,...,v, 

| i / ( y -A) |<CT0 1 / l / - " C i , s = i,2,...,w, 
where c7,cg are positive constants. Then F(x,y) violates Runge's Condition. 
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To see that Theorem 2 is a corollary of Theorem 1, we need to observe that 
e<d2, with strict inequality if Runge's Condition holds. 

2. Outline of the proof of Theorem 1. Let p = 1,2,..., M and construct 
functions 

^=1 e=0 \ n=—m 

Estimate the quantities F(x^T\y^;p) to find, for r = To, that they are of the 

order of magnitude 0(|x] ) where k < M + (se — l)m/e — ci(N + l)/e; whereas 

for a general r they are 0([x]5 ). Observe that 

F(x, y; p) = P(x, y;p) + ZE W 7 * M + 0(*_1/e), 

where P(x1y]p) is a polynomial with rational coefficients, the &PMi/s are ra
tional numbers, and where the double sum is extended over the M values of 
(/i, v) indicated in the theorem. Construct integers Bp, not all zero, for which 

M 

/ , Bpbpnv = 0, 

for all M pairs (//, i/), and for which 
M 

Q(z>2/) = E BpPfayip) e Z[x,y]. 

Prom the estimations of F(x^T\y^;p) we deduce that Q(x,y) vanishes for all 
but a finite number of these L-lattice points (x, t/), and so there is a polynomial 
of the form 

P{x9y) = Qi{x)Q{xty)€Z[xty]f 

with Qi(x) G Z[x], that vanishes at all of these L-lattice points. Finally we 
argue that P(x, y) and i \ (x , y) have the indicated properties. 

Note that for the finiteness results of Theorems 1 and 2 over algebraic 
number fields some restrictions like (iv) and (v) in Theorem 2 are needed. For 
example the equation (x — a)(y — b) = l satisfies Runge's Condition, but has 
infinitely many solutions, x = a + r}, y^b + rj"1 in integers of a number field 
with infinitely many units rj. 

As a simple illustration we consider the problem: When is the product of 
four consecutive integers a square? That is, find the solutions of 

y2 = (x - l)x(x + l)(x + 2) = x4 + 2x3 - x2 - 2x 
( 2 , 1 )

 = ( x 2 + x _ 1 ) 2 _ L 

This equation satisfies Runge's Condition. In Z the only solutions are clearly 
y = 0, x = —2,-1,0,1. It is equally easy to see that there are no other 
solutions in integers of imaginary quadratic fields, where the only new units 
to be considered are u) = ±i, (±1 ± iy/S)/2. Now equation (2.1) yields 

y + (x2 + x - 1 ) = w, y - (x2 + x - 1 ) = -ÖJ 
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and hence 
y = \{ÜJ - ö7), x2 + x-l = ^(<jj + üj). 

For w = +i the equation x2 + x — 1 = 0 has no solution in the field and for 
uj = (±1 + iy/3)/2 the quantities (w + w)/2 are not integers. 

In some real quadratic number fields there obviously are solutions with 
y 7e 0. Nevertheless the conditions of Theorem 2 are satisfied and we can get 
good bounds for the solutions. To see this let rj be the fundamental unit of 
the field. Then (2.1) yields 

y + {x2 + x-l) = ±rjn, y-(x2 + x-l) = +r)-n, 

or 

(2.2) y = ±±(r?n - V-n), x2 + x-l = ±\{r}n + r;-n) . 

So, if there are solutions for large n, then 

(2.3) l»l~t?72, @~(»?72)1/a 

while 

Thus condition (iv) of Theorem 2 is satisfied and condition (v) is vacuous. 
This yields the fact that the number of solutions is finite in integers of any 
real quadratic number field and the bounds can be readily computed, as we 
do in [3] for solutions in Z. 

The above argument is equally valid for all number fields with a cyclic 
group of units (other than the roots of unity), since in those cases \l/x\ and 
|l/y| are small when n—and hence fxl and \y\—are large. 
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