DIAGONALIZING MATRICES OVER OPERATOR ALGEBRAS

BY RICHARD V. KADISON

1. Introduction. Let A_0 be a C^* -algebra and A be the algebra of $n \times n$ matrices with entries in A_0 . If A_0 acting on a (complex) Hilbert space H_0 is a faithful representation of A_0 , then A acting as matrices on the *n*-fold direct sum H of H_0 with itself is a faithful representation of A. As a subalgebra of B(H), the algebra of all bounded operators on H, A acquires an adjoint and norm structure relative to which it is a C^* -algebra. This structure can be described independently of the representations—in particular, the operator in B(H) adjoint to (a_{jk}) is the element of A whose matrix has a_{kj}^* as its j,kentry. If A_0 is the (algebra of) complex numbers C, then A is the algebra of $n \times n$ complex matrices and each normal element a can be "diagonalized" that is, there is a unitary element u in A such that uau^{-1} has all its nonzero entries on the diagonal.

With A_0 a general C^* -algebra, can each normal element of A be diagonalized?

In §2, we give a construction (based on homotopy groups of spheres) to show that this (general) question has a negative answer. The main result is discussed in §3. If A_0 is a von Neumann algebra, diagonalization of normal operators is always possible. More generally,

THEOREM. If R_0 is a von Neumann algebra, R is the algebra of $n \times n$ matrices over R_0 , and S is a commutative subset of R with the property that a^* is in S if a is in S, then there is a unitary element u in R such that uau^{-1} has all its nonzero entries on the diagonal for each a in S.

2. An example. Let A_0 be the algebra $C(S^4)$ of continuous complex-valued functions on the 4-sphere S^4 and let A be the algebra of 2×2 matrices with entries in A_0 . View S^3 as the unit sphere in two-dimensional Hilbert space C^2 and consider the standard action of SU(2) (the group of 2×2 unitary matrices of determinant 1) on C^2 . The mapping that takes u in SU(2) to the vector u(1,0) is a homeomorphism of SU(2) onto S^3 . From [2], $\pi_4(S^3)$ is the additive group of integers modulo 2. Let u_0 be an essential mapping of S^4 into SU(2)(that is, into S^3). The algebra A can be viewed as continuous mappings of S^4 into $B(C^2)$. Thus u_0 is a unitary (hence normal) element of A. Suppose u is a unitary element of A that diagonalizes u_0 . Then $u(p)u_0(p)u(p)^{-1}$ is a 2×2 diagonal matrix over C for each p in S^4 . Let $\theta(p)$ be the complex conjugate of the determinant of u(p), let $u_1(p)$ be $\begin{bmatrix} \theta(p) & 0 \\ 0 & 1 \end{bmatrix}$, and let v(p) be $u_1(p)u(p)$.

© 1983 American Mathematical Society 0273-0979/82/0000-1036/\$01.50

Received by the editors August 9, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46Lxx, 47Cxx, 47Dxx.

¹Completed with partial support of NSF.

Then v(p) is in SU(2), $v(p)u_0(p)v(p)^{-1} = u(p)u_0(p)u(p)^{-1}$, and v is a unitary element in A. Let f and g be two continuous mappings of S^4 into SU(2) that take a "base point" p_0 in S^4 onto (the base point) I in SU(2). Let fg denote the mapping that assigns to p in S^4 the group product f(p)g(p) in SU(2). Let $\{f\}$, $\{g\}$, and $\{fg\}$ be the corresponding elements (homotopy classes) in $\pi_4(SU(2)) (= \pi_4(S^3))$. From [1], $\{f\}\{g\} = \{fg\}$. Moreover $\pi_4(SU(2))$ is abelian. Thus

$$\{vu_0v^{-1}\} = \{v\}\{u_0\}\{v^{-1}\} = \{u_0\}\{v\}\{v^{-1}\} = \{u_0\}\{vv^{-1}\} = \{u_0\} \neq 0.$$

But $v(p)u_0(p)v(p)^{-1}$ is diagonal and in SU(2) and hence has the form $\begin{bmatrix} \lambda(p) & 0 \\ 0 & \overline{\lambda(p)} \end{bmatrix}$, where $|\lambda(p)| = 1$. Thus vu_0v^{-1} maps S^4 into a subset of SU(2) homeomorphic to S^1 and $\{vu_0v^{-1}\} = 0$ —a contradiction. Hence u_0 cannot be diagonalized.

3. Matrices over von Neumann algebras. Let R_0 , R, and S be as in the theorem of §1. Let e_j be the element in R whose only nonzero entry is the identity at the j, j position. Then e_1, \ldots, e_n are n orthogonal equivalent projections in R with sum the identity element of R. Suppose we can find n orthogonal equivalent projections f_1, \ldots, f_n in R with sum the identity element such that each f_j commutes with every element of S. From various results in the comparison theory of projections in von Neumann algebras, we can conclude that e_j and f_j are equivalent in R for j in $\{1, \ldots, n\}$. Let v_j be a partial isometry in R with initial projection f_j and final projection e_j . Then $\sum_{j=1}^{n} v_j$ is a unitary element u in R such that $uf_ju^{-1} = e_j$ for j in $\{1, \ldots, n\}$. Since f_j commutes with each a in S (by assumption), uau^{-1} commutes with $e_j (= uf_ju^{-1})$ for each j in $\{1, \ldots, n\}$. Hence uau^{-1} is diagonal for each a in S.

The problem then is: Can we find f_1, \ldots, f_n with the properties described? Does the "relative commutant" of S in R contain n orthogonal equivalent projections with sum the identity? We have little control over this relative commutant. From Zorn's lemma, S is contained in some maximal abelian (selfadjoint) subalgebra A of R. Each such A is contained in the relative commutant. But S may itself be such an A, in which case, the relative commutant is a maximal abelian subalgebra of R. Thus we must be prepared to (and it suffices to) find f_1, \ldots, f_n as described in an arbitrary maximal abelian subalgebra of R. In effect, we must develop a comparison theory of projections in a maximal abelian subalgebra of R relative to R. The last of a series of results leading to such a theory is

THEOREM. If R is a von Neumann algebra and each type I_k central summand of R is such that k is divisible by n, then each maximal abelian subalgebra of R contains n orthogonal equivalent projections with sum the identity element of R. In particular, this is true of the von Neumann algebra of $n \times n$ matrices over a von Neumann algebra.

The full account of these results deals with the case where R_0 is countably decomposable to avoid complicated but peripheral higher cardinality considerations.

R. KADISON

4. Related questions. There are a number of other avenues of study indicated by the foregoing discussion and results. We mention a few. For which compact Hausdorff spaces X is diagonalization of normal matrices over C(X)possible in general? For 2×2 matrices? For 3×3 matrices? What is the relation between "n-diagonalizability" and "m-diagonalizability"? Certain types of normal elements may be diagonalizable in all circumstances—which are they? What "relative comparison theory" is possible for other von Neumann subalgebras of von Neumann algebras? For C^* -subalgebras of a von Neumann algebra?

BIBLIOGRAPHY

- 1. B. Eckmann, Über die Homotopiegruppen von Gruppenräumen, Comment. Math. Helv. 14 (1942), 234-256.
- H. Freudenthal, Über die Klassen der Sphärenabbildungen, Compositio Math. 5 (1937), 299-314.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADEL-PHIA, PENNSYLVANIA 19104