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For the modern reader Euclid's Tenth Book is by far the most intimidating 
portion of the Elements, by virtue of its enormous length and the obscurity of 
its techniques and motives. To approach this material, one requires a key, of 
the sort the Flemish mathematician-engineer Simon Stevin boasted to possess 
almost four centuries ago: 

After we had viewed and reviewed the Tenth Book of Euclid 
treating of incommensurable magnitudes, and also had read 
and reread several commentators on the same, of whom some 
judged it for the most profound and incomprehensible matter 
of mathematics, others that these are most obscure proposi
tions and the cross of mathematicians, and beyond this I 
persuaded myself (what folly doesn't opinion cause men to 
commit?) to understand this matter through its causes, and 
that there are in it none of the difficulties such as one 
commonly supposes, I have taken it upon myself to describe 
this treatise.1 

Stevin's ploy, by which "this whole affair is easy and without difficulty", 
involved the expression of Euclid's propositions via a calculus of surd quanti
ties, and more recent commentaries, such as those by Heath and by Junge, 
follow suit in the application of algebraic modes for explaining this material.2 

But for the historically minded reader the issue of interpretation has been 
complicated by this, for the originators of this theory cannot have had such 
algebraic modes at hand in their formulation. The project of elucidating the 
motives underlying Euclid's geometric form of the theory has largely eluded 
even the best of the modern accounts.3 

I here propose to offer a view of the geometric problems on which the 
structure of Euclid's theory is built. This view fills out the details of a sketch I 
presented in my study of the pre-Euclidean geometry a few years ago and 
supplements the handy treatment given before that by B. L. van der Waerden.4 

I will show how the essential idea of the theory emerges through consideration 
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of the Euclidean constructions of regular plane and solid figures, next trace out 
the development of this idea in the theory of Book X, and close with some 
thoughts on the nature of the formal project embraced in this book. It will first 
be necessary to introduce a few basic notions drawn from the early phases of 
the study of incommensurable magnitudes. 

I. First steps. Just when and how the ancient Greeks first discovered the 
existence of incommensurable magnitudes is a vexed question. On the author
ity of very late legendizing writers one could assign this discovery to Pytha
goreans early in the fifth century B. C , or even to Pythagoras himself a bit 
earlier still.5 But evidence drawn from the Presocratics discourages a dating 
before the middle of the fifth century. Although the context of studies of the 
regular pentagon and the division of Unes according to the "golden section" 
has been proposed as the initial context of the recognition of incommensurable 
Unes, fourth-century witnesses, like Plato and Aristotle, treat the side and 
diameter of the square as paradigmatic of incommensurables, while a geomet
ric form of the well-known proof of their incommensurability, founded on the 
distinction between odd and even integers, offers a perfectly feasible manner 
for the discovery and first demonstration of this result.6 Indeed, the special 
computational difficulties which arise in the evaluation of y/l already had by 
then a history of over a thousand years.7 In perceiving that such a quantity was 
in principle inexpressible as a ratio of integers, the Greek geometers would be 
injecting a characteristically theoretical element into the investigation of a 
technical matter. 

By around 400 B.C. other constructions were recognized to give rise to 
incommensurable Unes through efforts by Theodorus of Cyrene and Archytas 
of Tarentum, and the general result incorporating these was known, and 
perhaps first enunciated by Theaetetus of Athens early in the fourth century. 
Plato gives a loose statement of it in the dialogue named after this mathemati
cian: 

Such lines as square the equilateral and plane number we 
defined as 'length', but such as square the oblong number as 
'powers', for these are not commensurable with the former in 
respect of length, but rather in respect of the planes which 
they produce. And concerning the solids another such thing 
holds.8 

The sharp arithmetical cast of this formulation is tempered in the statement of 
the more general condition within the Euclidean theory: 

The squares on Unes commensurable in length have to each 
other the ratio which a square number has to a square 
number; and [conversely], squares having to each other the 
ratio which a square number has to a square number will also 
have the sides commensurable in length...9 

In this extension, the condition covers not only the case where one of the Unes 
or squares is an integral multiple of the other, but also when the ratio of the 
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one to the other is that of an integer to an integer. Plato's aside on the solid 
case is of interest, since it makes clear that the condition for the commensura-
bility of Unes formed as cubic roots of integral or rational terms was well 
understood. As the latter has no bearing on the constructions in the Euclidean 
theory, it does not receive its statement there. But the principles by which 
Euclid effects the plane case appear with their solid correlates in Books VI, VII 
and XI of the Elements, so that we may readily assume that the ancients knew 
the extension to the solid case also. As for higher powers, the impossibility of a 
geometric representation raises a difficulty. But for any mathematician pre
pared to manipulate such terms in the flexible manner of Diophantus, both the 
statement and proof of the general condition of commensurability for any 
powers would be at hand.10 

A defect in the Euclidean formulation is worth noting at this point: as it 
stands, it does not yield a complete criterion for commensurability in length or 
in (second) power only, for it does not state how a ratio of integers is known to 
equal or not to equal a ratio of square integers. A lemma attached to this 
proposition attempts to supply this gap by noting that "similar plane numbers," 
and only they, will have the ratio of a square number to a square number; but 
this lemma is recognizable as a post-Euclidean addition.11 As it happens, one 
can obtain the needed result from the Euclidean number theory, to show, for 
instance, that if a ratio equals a ratio of square integers, its least terms are 
square integers.12 Perhaps Euclid viewed as obvious this or some equivalent. 
But we would be more comfortable in our assessment of the formal precision 
of his theory of irrationals, had he included the appropriate statement and 
proof of this condition. 

We have the following important testimony to Theaetetus' theory of irration
als from the commentary on Book X by Pappus of Alexandria: 

Theaetetus distinguished the powers commensurable in length 
from those incommensurable, and he distributed the very well 
known among the surd lines according to the means, so that 
he assigned the medial line to geometry and the binomial to 
arithmetic and the apotome to harmonics, as Eudemus the 
Peripatetic reported.13 

Interpreting this passage should take into consideration that the informant, 
Eudemus, was a disciple of Aristotle, hence positioned between the times of 
Theaetetus and Euclid. The terms "medial", "binomial" and "apotome" are 
basic within the Euclidean classification of the irrational lines, but we learn 
from another Aristotelian tract that these names were "only recently" intro
duced.14 Thus, we may infer from Eudemus' report not that Theaetetus had 
established a correlation between the Euclidean classes and the means, but 
rather that Theaetetus formed his own classes of irrationals as the means of 
given lines. The correlation with the Euclidean classes is thus Eudemus' 
manner of characterizing what Theaetetus did in terms more familiar to 
students of the later theory. Interestingly, the initial distinction between linear 
and square-only commensurables is here spoken of as one of powers, rather 
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than of lines. In this, Eudemus adheres more closely to the designation we read 
in Plato's account, rather than that of Euclid. 

From this it is possible to infer what Theaetetus' procedure was: starting 
from two Unes taken as commensurable in square, but not in length, he formed 
from them in turn their geometric, arithmetic and harmonic means and showed 
that each of these resulted in an irrational line. We would suppose that the 
treatment of the first two of these was not significantly different from Euclid's 
handling of the corresponding medial and binomial lines.15 For instance, let 
the given Unes be a and b, such that a: bis not a ratio of integers, but a . b2 

is. If we denote as g their geometric mean (so that g2 = a-b\ then we claim 
that g is irrational; i.e., g2 is incommensurable with the square of any rational 
line.16 It suffices to show that g2 : a2 (or g2 : b2) cannot equal a ratio of 
integers. For if it did, then since g2: a2 = a-b: a2 = b: a, the lines b and a 
would be commensurable in length, contrary to their having been taken as 
incommensurable. If next we set e = \{a + b)9 their arithmetic mean, it 
follows that e also is an irrational line. For if not, it would follow that 
(a + b)2 : a2 is a ratio of integers. Since (a + b)2 : a2 = a2 + b2 + 2a • b : a2 

and, by assumption, b2 is commensurable with a2, it follows that 2a-b is 
commensurable with a2, or b is commensurable with a. This contradicts our 
initial assumption that a and b are incommensurable. 

In the treatment of the third case, the harmonic mean h of the given 
incommensurable lines a, b, one would use the relation a — h: h — b = a: b 
by which the mean is defined; this is equivalent to the relation h = 2a • 
b/(a + b\ that is, h : b = a : e, for e the arithmetic mean.17 Then, if h were 
rational, h2 : b2 would equal a ratio of integers, so that e would be rational; 
this last contradicts the irrationality of e, as just proved. Now, one may 
observe another relation derived from that used for h above, namely, h: a — b 
— 2a-b\a2 — b2. From this, one can refer results relating to h to others 
dealing with a — b. In the Euclidean theory, the apotome irrational is defined 
as a — b, and its irrationality is proved via consideration of the ratio 
(a — b)2 : a2, parallel to the manner given above for the arithmetic mean.18 It 
thus happens that Euclid treats the apotome independently of the binomial 
and relegates to a postscript the property that any binomial (a + b) and its 
associated apotome (a — b) have a rational product (namely, a2 — b2).19 By 
contrast, the analogue of this property would be the chief instrument for 
reducing the harmonic to the arithmetic case within the means-based theory of 
Theaetetus. 

In the absence of further documentation, it is pointless to speculate on the 
details of Theaetetus' theory. Presumably, he worked out certain analogues to 
results presented by Euclid, for instance, the uniqueness of the representation 
of an irrational line as a mean between incommensurable terms. But one thing 
is entirely clear: Theaetetus could not have attained any results on the 
irrationality of such lines without use of the complete condition on square-
commensurability as held in the Euclidean theory. The commentator Pappus 
rightly contrasts the restricted Platonic statement of this condition with the 
general Euclidean statement, observing for instance that the terms \Z? and 
JÎS, each incommensurable with a supposed unit term, can be recognized as 
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commensurable with each other only through reference to the Euclidean 
formulation.20 But Pappus seems to assign this Hmitation of the Platonic 
definition to Theaetetus as well. One perceives that he must here be drawing 
inferences from the Platonic dialogue, without any independent basis in 
mathematical or historical sources. For his claim is incompatible with a theory 
of irrationals of even the most rudimentary sort. 

Euclid's Tenth Book at a Glance 
Table I: Some Basic Definitions and Results 

Two magnitudes are commensurable if and only if they have a 
common measuring magnitude (Def. 1; cf. prop. 2-4); thus, 
commensurable magnitudes have to each other the ratio of an 
integer to an integer (prop. 5-8). We will write "aC^" when 
the magnitudes a, b are commensurable with each other, and 
"a 0 b" when they are not. 

Two lines a, b are commensurable in length whenever a C b\ 
they are commensurable in square whenever a2Cb2 (Def. 2). 
If aCb, then a2 : b2 is a ratio of square integers (prop. 9). 
Note that lines may be commensurable in square only, that is, 
whenever a2Cb2, but a 0 b. 

We posit a certain line r as " the rational;" then any other line 
r' is rational whenever r2C r'2, but irrational otherwise (Def. 
3). Note that r' may be rational, yet r<jkr'\ this is a critical 
respect in which the Euclidean notion of "rational" differs 
from that familiar in modern number theory. 

We call an area A rational whenever ACr2, but irrational 
otherwise (Def. 4). Thus, Euclid's notion of rational areas 
agrees with the modern. 

Whenever the product of two rational Unes r, r' forms a 
rational area, rC r' (prop. 20). 

Let a, b be rational Unes, commensurable with each other in 
square only; then the irrational area formed as ab is called 
medial, and its "side" (i.e., the line c such that c2 = ab) is a 
medial line and is irrational (prop. 21; cf. 23, porism). 

The difference of medial areas cannot be a rational area 
(prop. 26). 

Let ö, b be rational lines, commensurable with each other in 
square only; then a + b is called a binomial Une and is 
irrational (prop. 36), and a — b is called an apotome and is 
irrational (prop. 73). 
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II. Advances by Eudoxus. Distinguished among the geometers in the genera
tion after Theaetetus was Eudoxus of Cnidus. He is known best for his 
invention of a method of limits for the rigorous measurement of curvilinear 
plane and solid figures, the basis of Book XII of the Elements, and for his 
working out a general technique of proportions equally valid for commensura
ble and incommensurable magnitudes, the basis of Elements V.21 The latter 
already establishes a link with the work of Theaetetus, but certain testimonies 
indicate a further connection. For the commentator Proclus relates that 
Eudoxus contributed to the study of the means and that he "advanced through 
the use of analyses the number of things known about the section, which took 
their start from Plato."22 The association here with Plato is obscure, and may 
be nothing more than a bit of Proclus' neo-Platonizing; but the suggestion that 
he refers here to some study of the "golden section" seems more fruitful, for it 
permits a connection with the substantial materials on this topic in the 
Euclidean Elements. The construction of the "section" itself must already have 
been familiar within the older geometry, for it is crucial for solving the 
problem of inscribing a regular pentagon in a given circle.23 But other aspects 
of this study might well have been discovered at the later time of Eudoxus, for 
instance, the proof that the segments of a line so divided are irrational.24 One 
can see how these very results form a bridge between Theaetetus' theory of 
irrationals, as just outlined above, and the more elaborate structure in Book X. 
Let us consider the construction of the "section" and two results on the 
irrationality of its segments, in order to reveal their significance for the 
development of the theory of irrationals. 

A 

E 

K D 

T B 

FIGURE 1 
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The project of the division is to determine the segments x and y of a given 
line a such that y2 = x • a, or x : y = y : x + y. In the Euclidean terminology, 
the Une is said to be divided into "extreme and mean ratio". Following the 
simpler method in II, 11, rather than the somewhat more complex method in 
VI, 30, we draw on the given line AB its square ABDG , bisect its side AG at E 
and join BE. Next, we extend GA to Z such that ZE = EB and complete the 
square AZHT. Then T divides AB such that the segments AT, TB have the 
required property; that is, if we set AT = y and TB = x, theny2 — x-a. 
Without going into the steps of the proof, we may observe the critical feature 
of the construction, that BE is the hypotenuse of a right triangle whose legs 
equal a, {a, respectively; that is, (y + \d)2 : (\d)2 — 5 : 1 . It thus follows that 
y + \a : \a = J5 ': 1, whence y : \a (= x : \y) = \/5~ — 1:1. One thus sees not 
only that x and y are incommensurable both with respect to a and to each 
other, but also that y is an apotome irrational (of terms y/5 and 1). From the 
relation x : \a = 3 — y/5 : 1, it is also clear that x too is an apotome irrational. 
This is the procedure Euclid follows in establishing the irrationality of these 
segments in XIII, 6. But one would suppose that a geometer working within 
the theory of Theaetetus sought to display each of these segments as a mean 
between two incommensurable Unes. We can find these via a method of "false 
position" based on the expression for the harmonic mean given above. For if h9 

h' are the respective harmonic means of terms a, P and a', /?', where 
a: a' = ft: P', then h : h' has the same value. Let us set a' : \a = y/5 :1 and 
P' : \a = 1: 1, so that h' : \a(fî - 1) = y/5 :2. Since h : \a = y[5 - 1: 1, it 
follows that a':a = p': p = y[5 :2, whence a : \a = 2 :1 and p : \a - 2 : \/5~. 
Similarly, since the lesser segment x is such that x : ja = 3 — y/5 :\, it will be 
the harmonic mean of terms a, P where a : \a — 2 : yf5 and P'.ja = 2:3. 

In this case, the expression of the greater and lesser segments via the 
differences \/J — 1 and 3 — \/5", respectively, is so natural that their alternative 
expression as harmonic means is hard to suppose other than through the 
medium of the relation for h : a — p. This suggests that problems of this kind 
eventually led geometers to recognize the greater efficiency of dealing with this 
class of irrationals in the form of the apotome rather than as a harmonic mean, 
and so to reformulate the theory of Theaetetus in the Euclidean manner. 

If we search among the Euclidean results relating to the extreme and mean 
section, however, only one emerges as of sufficient interest to merit the special 
attention of a geometer of Eudoxus' caliber. This is the expression of the side 
of the regular pentagon inscribed in a circle of given rational radius as an 
irrational line (XIII, 11), by which Euclid expresses as an irrational the side of 
the regular cosahedron inscribed in a sphere of given rational radius (XIII, 16). 
Since the manner of inscribing the pentagon (in IV, 10-11) depends on the fact 
that its diagonal and side are the greater and lesser segments, respectively, of a 
line divided in extreme and mean ratio, we know from the above that they will 
be incommensurable with each other, and also that they will be apotome 
irrationals in the case that their sum is the given rational line. But in the 
context of the inscription problem, it is the radius of the circle which is the 
rational line, so that the side and the diagonal will take on new expressions 
relative to it. Let us consider how a geometer working within the earlier theory 
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would approach the problem of expressing these lines as irrationals. In what 
follows, I will simplify by replacing the arithmetic and harmonic means with 
the sum and difference, respectively, of their terms. Euclid investigates only the 
side of the pentagon in the construction of XIII, 11. While I follow his method, 
it will be convenient to develop along with it the expression for the diagonal. 

Let the regular pentagon ABGDE be inscribed in the circle of center Z and 
given rational diameter. Draw diameter AZK meeting side GD at right angles 
at H, join diagonal EB, meeting AK at right angles at T, and join diagonal AG 
and radius ZG. Let us denote ZG as r, a rational line, and set GD = s, 
AG = BE = </, TZ = x and ZH=y. Since AB2 = T A A K and AG2 = 
HA • AK, we have that s2 = 2r(r — x) and d2 = 2r(r + y). Further, since the 
triangles BTZ, AGH are similar (for they are right and the angles at B and at 
A are equal), x : r = \s : d\ and since the triangles ZGH, BAT are similar, 
y : r = \d : s. Since further d, s are in extreme and mean ratio, d: s = d + s: d, 
whence (s + \d)2\ (\d)2 = 5 :1, as seen earlier. It follows that s:\d={5 — 
1:1, or that js: d = x: r = y/5 — 1:4. Similarly, y: r= %d: s = li]/5 — 1 
= }/t + 1 : 4. Thus, s2 : r2 = 2(r - x) : r = 5 - y/5 : 2, while d2 : r2 = 
2(r + y) : r = 5 + y/5 : 2.25 

FIGURE 2 

This result makes clear that d and s are irrational lines, for d2 and s2 are 
each incommensurable with r2. But as to what sort of irrational each is, one 
cannot yet say, since each has been derived not as the sum or difference of 
incommensurables, but as the square root of such a sum or difference. We have 
thus to inquire into the nature of the terms y, 8 such that d = y + 5, while 
s = y — d. The argument will take the form of what the Greeks called 
"analysis", in that the desired result is at first assumed as known and is then 
reduced to another result within the set of "givens", that is, of results which 
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have already been established or which can be stipulated.26 In the present case, 
we assume that d and s are, respectively, the sum and difference of rational 
terms y and 8, commensurable with each other in square only—that is, d is a 
binomial (or arithmetic) irrational, while s is an apotome (or harmonic) 
irrational—and from this display explicitly what the terms y and 8 are.27 We 
must first show that these two assumptions are compatible: that is, that 
d = y + 8 implies s = y — 8. To do this, we must suppose that the body of the 
Euclidean theory of the medial Unes and areas was already available within the 
earlier theory. In particular, that an area which is the sum (or difference) of a 
rational and a medial area is so expressible in only one way (cf. X, 26, 42, 79). 
Since d2 = (r2/2)(5 + /T) = (y + S)2, one has that y2 + 82 = \r2 and 2y • 8 
= (y/5/2)r2. Subtracting, we find that (y - 8)2 = (r2/2)(5 - y/5) = s2, or 
s = y — 8, as claimed. Note how the terms y, 8 are here set out in two related 
ways: once via the sum of their squares being given along with their product; 
and again via their sum and their difference being given separately. From the 
latter linear relations one readily deduces that y2 = (r2/4)(5 + 2\f5) and 
«2 = ( r 2 / 4 ) ( 5 _ 2jS ).28 

We have thus displayed d and s explicitly as the sum and difference of 
incommensurable terms.29 But it also becomes evident that neither is an 
irrational line of the standard sort initially supposed. For the lines y, 8 would 
have to be rational, commensurable with each other in square only. Clearly, 
neither is commensurable in square with r2, so that they are not rational; 
moreover, if y2: 82 = m: n, a ratio of integers, it would follow that m + n : 
m — n = 10:4/f , and this is impossible since 10, 4 ^ are incommensurable 
terms. We thus have found that d and s are examples of a new kind of 
irrational. 

Since d is the greater and s the lesser of the segments formed via the extreme 
and mean division of a line, I will call the former a "greater" irrational and the 
latter a "lesser" irrational. I believe that the discoverer of this result introduced 
these very names; for in the Euclidean theory, the classes of irrationals for 
which d and s may be viewed as the paradigm cases are called, respectively, the 
"greater" (or "major", meizdn) and the "lesser" (or "minor", elassön). The 
Euclidean names have otherwise entirely eluded the efforts of commentators, 
ancient and modern alike, to find an explanation.30 

As for the identity of the discoverer, I have already indicated Eudoxus. As 
noted, he is said to have advanced the study of "the section" by means of the 
method of analysis. That is an apt summary of the account just given, while it 
is difficult to conceive how any other of the Euclidean results on the extreme 
and mean division could have engaged the efforts of one such as Eudoxus, if 
indeed that is what is meant by "the section". Moreover, this particular result 
happens to have crucial significance for the elaboration of the theory of 
irrationals. This already begins to emerge from what we have seen and will 
become fully clear from what follows. 

III. Extension of the theory. Although the diagonal and the side of the 
pentagon did not turn out to be a simple binomial and apotome, respectively, 
each was indeed produced as the square root of the product of a rational line 
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by a binomial or an apotome. We are thus led to consider the problem of 
specifying the conditions under which such a square root will in fact be a 
simple binomial or apotome. The solution of this problem provides the key to 
understanding the motive and rationale of the whole Euclidean theory. 

Euclid's Tenth Book at a Glance 
Table II : Definitions and Relations of Irrationals 

Given the rational Une r, we denote the binomials/apotomes 
"of order k" as ak ± bk and the corresponding additive/sub-
tractive irrationals "of class k" as ck±dk. The following 
relations obtain: 

Jr(ak
±bk) z=ck±dk 

cl^\r(ak^sk\ d2
k = 

1 rak = c2
k + dl rbk = 

(taking signs in same order); 

\r(ak-sk\ for sk=ja2
k-b

2
k; 1 

2ckdk. J 

Constructions of the Orders and Classes 

Binomials/Apotomes 

k = 1 axC sx 

axCx 

1 b\&r 

K — L CL2 \*s S2 

a2<jtr 
J b2Cr 

k — Z a 3 C5 3 

a 3 0 r 
Z>30r 

k = 4 a4$s4 

a4Cr 
b4#r 

k = 5 o50s5 

a&r 
1 ftjCr 

1 /c = 6 a 6 0 5 6 

"et' 
h$r 

Additive/Subtractive Irrationals 

Cj, dx rational, cx0dx 

(hence, c\ + d2 is rational, 
cxdx is medial) 

c2, d2 medial, c20d2 

c\ C d\ (hence, c\ + d\ is medial) 
c2d2 rational 

c3, d3 medial, c30d3 

c\ C (il (hence, cf + d2 is medial) 
c3d3 medial 

cl$dl 
c\ + ^4 rational 
c4d4 medial 

cf -f d2 medial 
c5d5 rational 

cltdl 
c\ + d\ medial 
c6d6 medial 
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Let us start with the product r(a + b)9 for r rational and for a, b rational, 
but commensurable with each other in square only. We intend that the "side", 
or square root, of this area be a binomial c + d\ that is, that c, d also be 
rational, commensurable with each other in square only. As before, it follows 
that ra — c2 + d2 and rb = led. Thus, r(a — b) = (c — d)2, so that we may 
combine the cases of a + b and a — b. Note that one condition has already 
appeared: that one of the terms of the given binomial, say a, must be 
commensurable with r, while the other, b, can be commensurable with it in 
square only. Solving for c and d, we find that c2 = {r/2){a + {a2 — b2)x/2\ 
while d2 = (r/2)(a — (a2 — b2)l/2). For c and d to be rational lines, as 
required in the problem, it is necessary that c2, d2 each be commensurable with 
r2. Since a is commensurable with r, we must also have that (a2 — b2)l/2 is 
commensurable with r. It thus results that the necessary and sufficient condi
tion that the side of r(a ± b) be, respectively, the binomial or apotome c ± d is 
that both a and (a2 — b2)l/2 be commensurable with r.31 

In the Euclidean terminology, the terms a ± b are called the "first" binomial 
and apotome, respectively. If alternatively (a2 — b2)l/2 is commensurable with 
a, but neither is commensurable with r, but b is, the "second" binomial and 
apotome result; if again (a2 — b2)l/2 and a are commensurable with each 
other, but neither they nor b is commensurable with r, then the "third" 
binomial and apotome result. There remain three further cases, where 
(a2 — b2)1/2 and a are incommensurable with each other, but a is com
mensurable with r (the "fourth" binomial and apotome), or b is commensura
ble with r (the "fifth"), or neither a nor b is commensurable with r (the 
"sixth"). Clearly, this scheme exhausts in an obvious way the binomials and 
apotomes in accordance with the solution of the preceding problem. Moreover, 
for the "first" class, but for none of the derived ones, it holds that the "side" is 
a binomial or apotome irrational.32 

It is immediately obvious that the "sides" in each of these derived classes are 
irrational lines. For if c ± d were rational, then (c ± d)2 would be com
mensurable with r2, whence a ± b would be commensurable with r; but this is 
excluded, since a ± b is introduced in all cases as a binomial or apotome 
irrational. The Euclidean theory bears further marks that this was the manner 
by which the irrationals beyond the apotome and binomial were first set out. If 
we consider the particular cases of the diagonal and side of the inscribed 
pentagon, presented above, since these are found to be the "sides" of the 
products of the rational r/2 by the irrationals r(5 ± J5), respectively, the 
latter falling under the "fourth" order of binomials and apotomes, all such 
irrationals formed as the "sides" of lines in this order are called "greater" and 
"lesser", respectively. The "side" corresponding to the "fifth" binomial is 
called " that whose square is a rational plus a medial" (for here, rb is a rational 
area, while ra is a medial area); similarly, the side of the "sixth" binomial is 
called "that whose square is two medials" (for both ra and rb are medial 
areas). These have the obvious analogues in the cases of the "fifth" and "sixth" 
apotomes. Now, the same nomenclature could be applied as well to the 
"second" and "third" classes. One thus needs an additional identifying feature 
for these, and Euclid finds it by referring to the terms c, d which form their 
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"sides". Since c2, d2 respectively equal \ra ± \r(a2 — b2)l/2, as seen above, 
and since in the "second" and "third" cases the lines a, (a2 — b2)l/2 are 
commensurable with each other and simultaneously both incommensurable 
with r, it follows that c2 and d2 are each a medial area, whence c and d are 
each medial irrational lines. Euclid accordingly designates the second and third 
classes of additive irrationals the "first" and "second bimedial", with corre
sponding names for the second and third classes of subtractive irrationals. 
Note that this designation does truly distinguish between the second and third 
classes on the one hand and the fifth and sixth on the other. For in the latter 
classes, the Unes a, {a2 — b2)l/1 will be incommensurable with each other, so 
that their sum or difference will be a binomial or an apotome irrational, 
respectively, but never a rational line. Thus, for these c2, d2 cannot be medial 
areas, nor can c, d be medial irrational Unes.33 

We close this section with the consideration of a property important within 
the EucUdean theory: the uniqueness of the representation of any irrational 
line, or in EucUd's phrase, "an irrational line is divided into its terms in one 
way only". It is possible to see how this result follows in the general case from 
its proof for the binomial and apotome. The latter appear in (X, 42 and 79), of 
which the following is an adaptation. Let us assume the binomial Une a + b, 
where a, b are rationals, commensurable with each other in square only; and 
let us suppose another pair of such Unes, a' and b', such that a + b = a' + b': 
it is claimed that a = a', b = b'. For if not, since (a + b)2 = (a' + b')2, the 
difference a'b' — ab will be a rational area, since the squares of a, a', b, b' are 
all rational.34 Thus, if we set aa" — a'b' — ab, a" will be rational and com
mensurable with a (cf. X, 20); if we set ab" = a'b', then b" wiU be rational, but 
commensurable only in square with a (cf. X, 22). We thus have a" = b" — b, 
so that b" — b is a rational line; hence, b" is commensurable with b (for 
otherwise, their difference would be an apotome irrational).35 Thus, b is 
commensurable with a", and hence also with a; this contradicts our assump
tion of a + b as a binomial. It follows then that ab = a'b', whence also that 
a2 + b2 = a'2 + b'2. Thus, a2 + b2 - lab = a'2 + b'2 - la'b', so that a - b 
= a' — b'. Since also a 4- b = a' + b', we have that a — a' and b = b', as 
claimed. Note that the argument, modified in the obvious way, leads to a proof 
of the uniqueness of the apotome as well. 

Consider now the case of any additive irrational c + d, and assume that 
c + d = c' + d'; it is claimed that c = c',d= d'. We may express (c + d)2 = 
r(a -h b) and (c' -I- d')2 = r'(a' -f b'\ in accordance with our basic construc
tions of the irrationals, so that r(a + b) = r'(a' + b'). Set r'a' = ra"9 r'b' = 
rb"\ then a + b = a" + b"9 an equaUty of binomials, so that a = a" and 
b = b'\ as just shown. Thus, ra = r'a' and rb = r'b', so that c2 + d2 = c'2 + 
d'2 and 2cd= 2c'd'. Taking the differences, we have that (c — d)2 = 
(c' — d')2

9 so that c — d — c' — d'. Since also c + d = c' + d\ it follows that 
c — c' and d = d'9 as claimed. As before, the companion theorem for the 
subtractive irrationals c — d foUows in similar fashion. 

It is thus clear how the derivation of the irrationals of form c ± d as the 
"sides" of areas of the form r(a + b), for a ± b one of the six types of 
binomial or apotome, respectively, provides an effective instrument for the 
proofs of the irrationaUty and uniqueness of c ± d. We have seen how this 



EUCLIDEAN THEORY OF IRRATIONAL LINES 53 

same derivation of the irrationals could have arisen in the natural course of 
early inquiries into this subject. Moreover, their full elaboration within the 
Euclidean theory, as propositions X, 48-65, 85-102 must surely indicate that 
Euclid and his predecessors were well aware of these applications of this 
scheme of derivations. We may now turn to Euclid's formal treatment of these 
materials in Elements X. 

IV. The Euclidean formulation. One might suppose that any account which 
provides a natural motivation for the content and nomenclature of a theory 
like that of Euclid on irrational lines, and which produces straightforward 
proofs of all of its principal results, would have a strong claim for capturing 
the manner of the historical genesis of that theory. The account we have just 
given, however, must confront the central difficulty that Euclid does not in fact 
present these materials in the manner we have proposed. It is thus necessary 
briefly to consider Euclid's order of presentation, and then to attempt to 
explain how and why he diverges from what we should have expected. 

The opening section of Book X is devoted to general results on commensura
ble magnitudes and rational Unes. The set of theorems X, 19-26 deals with 
areas formed as products of rational lines. This includes the result that when 
the area is rational, its generators are commensurable with each other in length 
(20), the definition of the "medial" line as the "side" of an area whose 
generators are commensurable in square only, and the proof that the "medial" 
is irrational (21), and properties on medial and rational areas, such as that the 
difference of medial areas cannot be a rational area (26). There follows a 
section of special constructions (X 27-35) by means of which Euclid goes on to 
construct the six classes of lines c + d and prove their irrationality (X, 36-41), 
and later to construct the six classes c — d with their irrationality (X, 73-78). 
For instance, the "major" irrational (39) is constructed as the sum of lines c, d 
which are taken to be incommensurable with each other in square, but for 
which c2 + d2 is rational and cd is medial; how actually to produce such Unes 
c, d is known via the earlier problem X, 33. One notes that the problem of 
determining lines satisfying conditions of this sort is standard within the older 
field of the geometric "application of areas", embracing portions of Elements I, 
II and VI, to which the constructions in X continually make implicit reference.36 

A prominent feature of the proofs of irrationality here is that each is treated as 
a special case with its own particular characteristics. While one readily senses 
the technical similarity of one case to the next, there is decidedly no effort 
actually to derive any case from any preceding one. 

In the next set of theorems X, 42-47 Euclid establishes the uniqueness of the 
expression for each class of additive irrational, while the analogues for the 
subtractive irrationals appear in 79-84. Here again the treatments are particu
lar, so that no case is placed in dependence on any other. As it happens, the 
manner of proof for the third and sixth within each set (i.e., 44, 47 and 81, 84) 
is comparable to the general method we offered above. But even with this, 
Euclid makes no attempt to exploit, or even point out, their similarities. 

Only at this point does Euclid introduce the six-part division of the 
binomials and apotomes (in the Definitions preceding X, 48 and 85). Having 
defined them in the order we followed above, he presents their constructions 
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seriatim in the problems X, 48-53 and 85-90. In the next set of theorems X, 
54-59 he shows that the line formed as the "side" of an area generated by a 
rational and each of the binomials turns out to be one of the additive 
irrationals already specified; e.g., the "side" associated with the "first" bi
nomial is itself binomial (54), that associated with the "second" binomial is a 
first bimedial (55), and so on. The analogues for the apotomes and subtractive 
irrationals appear in X, 91-96. The converse theorems appear in X, 60-65 and 
97-102; e.g., that the square of the "major" irrational, when applied to a 
rational Une, produces as width a "fourth" binomial Une (63). Although these 
theorems on the orders of binomials and apotomes in relation to the additive 
and subtractive irrationals comprise almost a third of the Book, Euclid clearly 
treats these relations as properties of the irrationals, rather than as principal 
elements in their definition and construction. It is in this respect that his order 
of presentation differs most strikingly from the one we worked out earlier. 

Euclid next shows that a line commensurable with one of the additive or 
subtractive irrationals is itself of the same type, having each of its terms 
commensurable with the corresponding terms of that irrational (X, 66-69, 
103-107). Here again the treatment is particular. To be sure, the two bimedials 
are presented together (67), as are the two bimedial differences (104); but they 
are in fact separate cases of a construction which starts off in the same manner, 
the taking of two medial lines. A faint recognition of the possible interdepen
dence of these theorems arises with the last in each set, in that portions of the 
proofs can be admitted on the basis of equivalent steps in the theorem 
preceding. But the fact that all these theorems "are easy and require no 
elucidation", which leads Heath to omit any further commentary on them,37 

does not deter Euclid from providing a complete, and in most cases quite 
lengthy, demonstration for each. Now, in the theorems which open each set 
Euclid establishes not only that lines commensurable with a binomial or an 
apotome are themselves binomial or apotome, respectively, but also that they 
will fall within the same one of the six orders of binomial or apotome as that to 
which they are assumed commensurable (X, 66, 103). On the basis of this 
result, one can establish all of the remaining results as mere corollaries via the 
representation of the irrationals as "sides". For let z be commensurable with 
the irrational line c + d\ we set (c + d)2 — r(a + b) for a rational line r and a 
binomial a + b in one of the six orders. Then if we take r' : r = a' + b' : a -f b 
= z: c + d, it follows that z2 = r\a' + b') where r' is rational and com
mensurable with r and a' + b' is a binomial of the same order as a + b (from 
X, 66); thus, z is an irrational of the same class as c + d. Clearly, the same 
argument applies for the subtractive cases c — d. Once more, Euclid has failed 
to exploit the considerable advantage in efficiency of proof possible through 
the "side" representation of the irrationals.38 

In the next set of theorems, Euclid assumes the sum first of a rational and a 
medial area (71) and then of two medial areas (72), showing how in the former 
instance the "side" is one of four of the kinds of additive irrationals, while in 
the latter it is one of the remaining two kinds. We have already remarked how 
this property is implied in the names of the fifth and sixth irrationals (i.e., 
" that which produces in square a rational and a medial area", and " that which 
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produces in square two medial areas", respectively). In all these cases the 
property is evident from the representations of the irrationals as "sides" 
associated with the various binomials, and Euclid does in fact here frame the 
proofs around those representations. The analogous relations for differences 
among rational and medial areas are given in X, 108-110; where only two 
cases arose relative to the additive irrationals, three occur here, owing to the 
asymmetry in the instance of the difference between a rational and a medial 
area. Each of the three cases corresponds to two of the classes of irrationals. 

The section on the additive irrationals ends in a scholium after X, 72, to the 
effect that each type of irrational is different from the others; that is, no line 
can belong to more than one of the six additive classes. This is proposed as 
evident, since each is a side associated with one of the orders of binomial, 
while the latter are obviously distinct from each other by virtue of the manner 
of their definition.39 The parallel observation is made for the subtractive 
irrationals in a scholium after X, 111. That theorem itself establishes that no 
apotome can equal a binomial, so that one obtains the basis for the summary 
claim that the thirteen classes—the medial, the six additive and the six 
subtractive—form a disjunctive division of the irrational Unes. 

This is plainly a good place to end the theory. But Euclid appends four more 
theorems. Three of these (X, 112-114) deal with the products of cognate 
binomial and apotome Unes; e.g., that if a H- b is a binomial and a' — b' an 
apotome such that a is commensurable with a\ b with b' and a: a' — b\b\ 
then their product is rational (X, 114). This ought to pose no difficulty at all. 
For (a + b)(a — b) — a2 — b2 (cf. II, 5, 6), which is rational, being the 
difference of rational areas. Moreover, a' — b'' : a — b = a'' : a, so that (a •+• 
b)(a' — b') : {a + b)(a — b) = a' \ a. Since the latter are commensurable, {a 
-f b)(a' — b') will be commensurable with the rational area {a + b)(a — b), 
hence will itself be rational, as claimed. Euclid's proofs are monstrously 
complicated; it is left as an exercise for the reader to figure out why. But his 
failure to take up the cases of the products of the other cognate irrationals is 
more easily understood. If we consider the simple case of (c + d)(c — d) = c2 

— d2, the relations we developed above for c2, d2 show that c2 — d2 = 
r{a2 — b2)l/2. Now, in the first class (the binomial and apotome), the radical 
is taken commensurable with a, the latter being commensurable with r, so that 
the radical is also commensurable with r, whence the product is rational. In the 
second and third classes, the radical is also commensurable with a, but a is 
incommensurable with r; hence the product is medial. In the fourth class, the 
radical is incommensurable with a, the latter being commensurable with r, so 
that the product is again medial. As for the last two classes, the radical here is 
incommensurable with a, while a is incommensurable with r\ but this does not 
permit in general a determination as to whether the radical is commensurable 
with r or not. We thus cannot say here whether the product is rational or 
medial. In effect, then, one lacks a clear-cut theorem to state for the general 
case of products of cognate irrationals. This would be sufficient reason, I 
suppose, that Euclid did not try to raise the issue.40 

In the last theorem (X, 115) Euclid shows that the procedure of forming 
medial lines and medials of medials and so on gives rise to a never-ending 
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sequence of new irrational classes. This result was later generalized by Apol
lonius, who showed that the interpolation of any number of mean proportion
als between two given rational lines, commensurable in square only, yields 
irrational Unes. We recall that this extension is prefigured in the work of 
Theaetetus; for note that he considered the incommensurability of cubic roots, 
while these result from the construction of two mean proportionals between 
given lines. It is clear that Euclid's closing theorem suddenly throws open the 
field of inquiry, after the main body of the theory had been neatly tied and 
sealed in the scholium to X, 111 only four theorems earlier. This may be good 
cause for viewing the result as a post-Euclidean addition, as the prominent 
editors Heiberg and Heath do.41 Heath resists Heiberg's similar suspicions 
about the product theorems in 112-114, and I believe rightly so.42 Rather than 
looking forward to a new inquiry, they impress me as a remnant of the early 
stage of the theory, where the irrational lines were formed as geometric, 
arithmetic and harmonic means. Euclid's product theorems are analogues of 
the proportionality linking the means (i.e., a: g = g : h)9 the latter being an 
indispensable instrument for Theaetetus' theory, but later relegated to a 
subordinate status in the course of the revision and extension of the theory. 
Notably, when the commentator Pappus takes up the question of the general 
expression of the additive irrationals as arithmetic means and the subtractive 
as harmonic means, in order to complete Theaetetus' results for the binomial 
and apotome, he makes continual use both of the proportionality of the means 
and of the product theorems for the cognate irrationals.43 The latter he 
recognizes to hold not only for the binomial and apotome, as in X, 112-114, 
but for the other classes as well, much as we set them out above. Thus, 
whatever the actual provenance of this concluding set of theorems in Book X, 
their relevance for the theory even in its pre-Euclidean phases is unmistakable. 

This review of the Euclidean theory exposes a remarkable feature: that the 
imposing and carefully worked out structure of theorems in Book X belies the 
inherent simplicity of this subject matter through its presentation of obscurely 
motivated constructions and unnecessarily cumbersome proofs. In particular, 
the failure to exploit the "side" representations of the irrationals compels 
Euclid to produce separate treatments of a dozen special cases for each of the 
main results on the irrationality, the uniqueness and the closure (relative to 
linearly commensurable terms) of the irrational classes. These defects in 
technical execution must have been so obvious to any participant in the 
development of the theory, that we must assume their presence in Euclid's 
work were somehow the necessary consequences of decisions made on the 
organization of the theory. It is a notorious aspect of the classical geometry, 
and surely of other periods in mathematical history, that the order of formal 
presentation of results frequently, if perhaps not invariably, alters the order of 
discovery. Indeed, the formal "syntheses" which secured the solutions found 
via "analyses", in accordance with the standard technique of ancient geometry, 
typically reverse the order of the initial treatment. In a similar manner, an 
editor of the theory of irrationals might well view the deduction of the forms of 
the irrationals, via their constructions as the "sides" of areas associated with 
the six types of binomials and apotomes, as if it were an analytic preliminary 
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to the formally preferable manner of their construction: namely, as lines 
formed directly as the sums or differences of terms c, d given their own 
detailed construction. In effect, defining the lines implicitly via the forms of 
their squares might be deemed less satisfactory than the latter explicit con
structions of the Unes themselves, even if this turns out to be a more 
complicated procedure. Once that decision has been made on the ordering of 
the formal constructions, however, the difficulties in proof technique follow 
almost inevitably. 

The shift from heuristic analysis to formal synthesis subtly transforms the 
objective motivating the presentation of the theory. In the former instance, one 
would include the discovery of the forms of the irrationals and the efficient 
management of the techniques of their application as important goals. But in 
the latter case, one aims at a comprehensive exposition of a subject matter 
known, each result to be secured via a fully detailed proof. The ideal of 
comprehensiveness lays a new burden on certain aspects of the presentation. 
Ever since the Danish mathematician and historian H. G. Zeuthen proposed 
the thesis almost a century ago,44 one has commonly viewed the problems of 
geometric construction, such as one finds throughout the Elements and other 
ancient treatises in geometry, as a genre of existence proofs to justify the 
introduction of the special entities required in subsequent proofs. Accordingly, 
it is sometimes maintained that the problems of construction which Euclid 
solves in X, 27-35, 48-53 and 85-90 (e.g., 27: "to find medial lines com
mensurable in square only which contain a rational area"; 48: " to find the first 
binomial"; 85: "to find the first apotome") are intended as existence proofs 
supporting the constructions and proofs of the additive and subtractive irra
tional Unes (36-41; 73-78) and the theorems on their relations to the orders of 
binomials and apotomes (54-65, 91-102). But surely this view is incorrect. If 
Euclid wished merely to show that lines exist satisfying the specified condi
tions, he need only have provided a particular example of the construction at 
issue. For instance, the diagonal and side of the inscribed regular pentagon 
would serve easily and admirably to demonstrate the existence of "major" and 
"minor" lines and the associated "fourth" binomials and apotomes. Instead, 
Euclid effects the constructions in general, thus obtaining an explicit procedure 
for producing every term in every class of irrationals.45 I believe that nothing 
short of this could answer the purposes of his formal system of the theory. 

In view of this, there is a surprising lapse relating to one of the construc
tions, which, as far as I know, has not before now been pointed out by scholars 
on this subject. The problems in X, 29-35 on which the constructions of the 
irrational Unes depend refer in their turn to two constructions given in lemmas 
just preceding X, 29. Their object is to find two square numbers (integers) 
whose sum, in the first case, is also a square number, but in the second case is 
not. Now, if Euclid wished only to establish the existence of "Pythagorean 
integer triples," he need only have noted that 32 + 42 = 52 and been done with 
it. Instead, he establishes the form which all such integer triples must satisfy. 
His construction starts with an arbitrary pair of "similar plane numbers" m, n 
(i.e., admitting of a factorization m = ab9 n = cd such that a: b = c: d; 
whence, m : n = a2: c2, a ratio of square integers; cf. VIII, 26 and its use in 
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the lemma after X, 9), where m, n are either both even or both odd, and then 
forms p = \{m + n\ q — j(m — n). He then shows that p2 = q2 + mn; and 
since mn equals a square number (i.e., a2d2\ this secures what is asked in the 
first lemma. In a corollary, he observes that if m, n are not of the specified 
kind, the difference p2 — q2 will not be a square integer (for if m, n are not 
similar plane numbers, their product will not be square; cf. IX, 2). Euclid has 
thus provided the necessary and sufficient conditions that the sum of square 
numbers be a square number. 

It is in the second lemma that difficulty arises. Here one seeks square 
numbers whose sum is not square. As before, Euclid takes m, n as similar plane 
numbers, both odd or both even, forms p and q9 but considers the sum 
(q — l)2 + mn; in a complicated proof, he shows that each of the three 
possibilities—that the sum be greater than, equal to or less than (p — l)2— 
reduces to a contradiction; hence, the desired condition of the lemma is 
satisfied. Now, by contrast with the preceding lemma, this one does not effect 
the general construction; thus, for the strict logical requirements of the theory 
it is hardly better than merely observing that 22 + 42 = 20, whence at least one 
knows that numbers of the specified sort exist. Not only is the construction 
inadequate for his purposes, but even more puzzling, for all its complexity it is 
unnecessary. For the general condition can easily be inferred from the preced
ing lemma. We need only choose an arbitrary square number r2 and consider 
all of its factorizations r2 — mn, such that m, n are both odd or both even 
(note that IX, 2 entails that m, n are similar plane numbers); it is obvious that 
for any r2 there are only finitely many different factorizations. Corresponding 
to each of the pairs m, «, we form the value q — \(jn — n\ and then take q' 
any integer different from all these values of q. It follows that r2 + q'2 cannot 
be a square integer. For if, say, r2 + q'2 — p'2, the construction in Euclid's 
previous lemma shows that q' = j(m — n) for certain integers m, n such that 
mn = r2. Hence, q' must assume one of the values explicitly excluded in the 
construction. This contradiction thus estabhshes that r2, q'2 fulfil the condition 
of the lemma. In this alternative form, then, the construction yields the 
complete condition needed for the theory, and does so without any technical 
elements beyond those already worked out in the first lemma. Euclid's han
dling of the second lemma is thus yet another unsettling reminder that the 
proofs in Book X are not always as well conceived as they commonly are 
purported to be. 

V. Assessment. Although I have continually referred to the theory in Book X 
as being Euclid's, the question of provenance remains to be considered. It is of 
course possible that the Book is Euclid's own composition, consolidating the 
results of two generations of research on irrationals. But it seems equally 
possible that it is merely his own edition of a complete treatise on irrationals 
written by an earlier geometer. We have seen that the conceptions which 
initiated the study of irrational Unes were due to Theaetetus in the first third of 
the fourth century B.C. But if my view of his approach is correct, and if indeed 
the important insights on the irrationality of the diagonal and side of the 
pentagon are due to Eudoxus, then we can hardly assign to Theaetetus the 
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completed theory of Book X. Moreover, in view of the formal defects which 
mar that treatment of the theory, we would surely hesitate to assign it to 
Eudoxus or a comparably gifted disciple. We learn through the commentator 
Proclus the names of a few geometers active in the period between Eudoxus 
and Euclid.46 Among these, one Hermotimus of Colophon is said to have 
"advanced further the things already well provided by Eudoxus and Theaete-
tus and discovered many of the elements [sc. things presented in the Elements 
of Euclid] and composed some things concerning loci." If this statement can be 
accepted at face value, it conforms well with the assignment of the formal 
composition of the theory of irrationals in Book X to Hermotimus; for one 
supposes with difficulty that any other portion of the Elements remained to be 
discovered in the period after Eudoxus. But in view of the meagerness of our 
information on this period, we must admit the possibility that not even the 
name of the responsible individual has been transmitted in our sources. 

The relevant issue, then, is whether to assign authorship of Book X to Euclid 
himself or to place it with some such geometer as Hermotimus in the preceding 
generation. Our decision can be made only through a consideration of the 
motives and character of the author, as implicit in the Book itself, and of 
whether that portrait is compatible with our image of Euclid. The most striking 
feature to account for, as we have seen, is the author's failure to exploit the 
"side" representations of the irrationals, so that he unnecessarily burdens the 
proofs. We might dismiss the other lapses we have noted, such as the unwieldy 
demonstrations of the product theorems in X, 112-114 and the inadequate 
solution to the construction problem in the lemma prefacing X, 29, on the 
grounds that these might be clumsy additions by pöst-Euclidean interpolators. 
But this other matter of the handling of the irrationals as "sides" lies at the 
heart of the conception and organization of the theory. Is it possible that 
Euclid could be culpable of such defects in proof technique? Alas it is. For 
with respect to another (now lost) Euclidean work, the Porisms, Pappus finds it 
possible to consoHdate ten of Euclid's enunciations into a single proposition 
and in this way to recognize an even more general configuration of which they 
are special cases.47 The very fact that Euclid chose to transmit Book X in its 
extant form seems to testify to his basic sympathy with the approach therein 
adopted. 

Nevertheless, I perceive a mitigating factor which justifies shifting responsi
bility away from Euclid. Simply put, Book X is a pedagogical disaster. There 
might be a certain interest in seeing how a general construction admits of 
modified treatment in each of its particular cases; sometimes (although rarely 
in Book X) the result is a more elegant way of treating the case than the 
general procedure would be. But surely this is a concern for the formalist 
expositor of a theory, not the teacher of mathematical techniques. In view of 
the likely genesis of the theory, we can be certain that the author well knew, for 
instance, that the side of the regular pentagon exemplifies the "minor" 
irrational. But he does not in fact inform us of any such "real" configurations 
which might remedy the apparent artificiality of his inquiry. The essential 
mathematical ideas are smothered in detail, while the interest to develop skill 
in the implementation of these techniques in geometric contexts is set at far 
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remove.48 The history of the study of Book X provides evidence of these 
weaknesses. Among the ancients, Pappus knows of two other configurations 
which give rise to an irrational Une,49 and he sketches a few extensions made 
by Apollonius, the one generalizing the medial line via the interpolation of any 
number of mean proportionals, the other considering trinomial and quadri-
nomial expressions, etc., on the model of the binomial and the apotome.50 But 
Pappus' other observations on the construction of the Euclidean irrationals as 
means are of no great profundity, while other commentators cannot report any 
further results developing out of this theory.51 In this sense, one modern 
judgment of the work as "a mathematical bund alley'' is quite apt.52 Certain 
potentials of the subject matter are entirely missed, for instance, insight into 
how products of the form (a ± by/N)(c ± djN) bear on the finding of solu
tions to integral relations of the form x2 — Ny2 = ±m.53 Indeed, the task of 
merely comprehending the Euclidean theory itself seems to demand that one 
forsake its manner of exposition, and instead, in Stevin's phrase, to search 
" through its causes." If the subject is intrinsically "easy and without difficulty," 
its treatment in Book X will be found "incomprehensible" or "obscure," or 
misjudged as "profound," by the commentator who attempts a direct frontal 
assault on the formal theory. 

The student who approaches Euclid's Book X in the hope that its length and 
obscurity conceal mathematical treasures is likely to be disappointed. As we 
have seen, the mathematical ideas are few and capable of far more perspicuous 
exposition than is given them here. The true merit of Book X, and I believe it is 
no small one, lies in its being a unique specimen of a fully elaborated deductive 
system of the sort that the ancient philosophies of mathematics consistently 
prized.54 It constitutes the results of a detailed academic exercise to codify the 
forms of the solutions of a specific geometric problem and to demonstrate a 
basic set of properties of the lines determined in these solutions. One can thus 
profitably study Book X to learn how its author sought to convert a body of 
geometric findings into a system of mathematical knowledge. 

But our Euclid is not the author of obscure research monographs; he is the 
master pedagogue, the author most notably of the Elements, the most effective 
technical textbook ever written. If we hold to this stereotype (what choice have 
we?), then it is difficult to view him as having actually composed Book X. It is 
difficult enough even to fathom how he could have allowed this subject to be 
transmitted in such an unwieldy form, save perhaps as a formal challenge to 
students who had completed their introductory courses in plane geometry 
(Books I-VI) and number theory (Books VII-IX). But one would surely prefer 
to suppose that any effort on his own part to elucidate the theory of irrationals 
would have resulted in a clearer exposition than Book X. Or might Euclid have 
perhaps thought that the experience of confronting such a dense treatment 
would stimulate his students to discover alternatives through a recourse to the 
fundamental ideas—in effect, to respond as Stevin and other commentators 
would do much later?55 We may at least entertain in passing this somewhat 
romantic notion, despite the hint of perversity it seems to project onto Euclid. 
But if it happened to be true, it was a secret well kept by (or from) the ancient 
commentators, who for all their efforts failed to discern any more convenient 
alternative. 



EUCLIDEAN THEORY OF IRRATIONAL LINES 61 

It seems far more likely that Euclid merely incorporated into the Elements a 
complete treatise on the irrationals prepared by a geometer not much earlier 
than he. This would account for the omission from Book X of one of the 
results needed for Book XIII (see footnote 38); for the entire conception of 
Book X requires only an awareness of the values for the diagonal and side of 
the inscribed regular pentagon, as paradigms respectively of the "major" and 
"minor" irrationals, in relation to the basic classes of "binomial" and 
"apotome." Thus, the specific application of the scheme of irrationals toward 
the constructions of the regular solids, as in Book XIII, could come later and 
thus implement findings not included in this particular synthesis of the theory. 
It is of course a lapse on Euclid's part not to have caught and corrected this 
inconsistency between the two Books; but surely it is more difficult to imagine 
that he could have composed them in this defective manner. This view 
indicates further that Book X need not be taken as the full measure of the 
knowledge of irrationals at Euclid's time. Note that when Pappus works 
through his theorems generalizing on the formation of the subtractive irration
als as harmonic means, he sometimes speaks as if this were in fact a theorem of 
Theaetetus.56 The theorems themselves are not likely to have attracted research 
interest very long after the special definitions of Theaetetus' theory had 
receded into the historical distance. But they are quite appropriate to the 
concerns which would arise when the "Euclidean" classes of irrationals were 
introduced and their properties worked out. Thus, Pappus' ambiguity as to 
what Theaetetus did could well be transmitting a lack of clarity on the part of 
his source, Eudemus, to separate Theaetetus' results from their subsequent 
extensions. The actual treatise taken over by Euclid omitted some of these 
extensions, doubtless for their not yet being entirely familiar at the time of its 
composition. One expects an interval between the discovery of results and their 
incorporation into a textbook literature. But the most striking feature of Book 
X is surely how its author encumbers the proofs through his interests in 
system. By laying down this "mathematicians' cross" he demonstrates with 
extreme effectiveness how greatly the rigors of synthetic exposition can be in 
conflict with the heuristic aims of analysis. 

NOTES 
*My translation from the Arithmétique, 1585, p. 161; cf. p. 164 and the 

"Appendice" surveying the contents of Book X, pp. 187 ff. Heath [1926, III, 
8f] cites from a later edition (Oeuvres, 1634, pp. 218-222) a remark to similar 
effect (my translation from the French): "The difficulty of the Tenth Book of 
Euclid has become for many in horror, even to calling it the cross of the 
mathematicians, a subject matter too hard to digest and in which they perceive 
no utility." Stevin (1548-1620) was noted as an engineer and writer on 
mathematics. His Principal works have been edited by D. J. Struik (4 vols., 
Amsterdam, 1955-64); and his influential tract on decimal computation, De 
Thiende, has been issued in a German edition by H. Gericke and K. Vogel 
(Frankfurt am Main, 1965). 

2Heath [1926, III, 4f] cites the "valuable remark" by H. G. Zeuthen, that 
since the Greeks solved equations geometrically, and "inasmuch as one straight 
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line looks like another.. .it was necessary to undertake a classification of the 
irrational magnitudes which had been arrived at by successive solution of 
equations of the second degree." He mentions several other treatments of a 
comparable nature (ibid., p. 8) and emphasizes this approach in his own 
account of the Book (see note 32 below). G. Junge [1930, 17-26] seems much 
closer to a viable interpretation when, following the view of Chasles, he 
attempts to sever this "Gordischer Knote" (p. 19) via the project of simplifying 
surd expressions. Such a view, as refined by van der Waerden (see note 4), is 
not greatly different from the one I will go on to present. 

3I. Mueller [1981, Chapter 7.2] provides an immensely detailed account of 
Euclid's exposition. But even he admits to finding aspects of Euclid's theory 
"not completely perspicuous" or without "clear intuitive motivation" (p. 268). 
He rightly rejects assigning an "algebraic motivation" for the reasoning of 
Book X; but he reacts too strongly, I believe, in denying that it has "a clear 
mathematical goal intelligible to us in terms of our notions of mathematics" 
and in maintaining that "book X has never been explicated successfully in 
[such a] way nor does it appear amenable to explication of this sort" (pp. 270 
f). He himself views it as the formal elaboration of a classification of irrational 
lines conceived in response to the construction of the icosahedron in XIII, 16. 
As my discussion in §11 will show, I too wish to assign this construction a role 
in the genesis of the theory. But the theory itself, as I show in §111, evolves 
around another problem, one closer to that singled out by Junge and van der 
Waerden (see next note). 

4Knorr [1975, 279-284]; van der Waerden [1963, 168-172]. Comparably to 
Chasles and Junge (see note 2 above), van der Waerden frames the structure of 
Book X around the problem of determining when the root of a certain 
irrational is an irrational of the same kind (cf. the discussion of the binomials 
and apotomes in §111 below). The reader will find his breakdown of its 
structure extremely lucid, but may be puzzled at his insistence that "the Une of 
thought is. . .purely algebraic" (p. 171). 

5I discuss the early studies in detail in Knorr [1975, Chapter 2]. 
6For the construction, see Knorr [1975, 26-28]. The Aristotelian passages 

are set out by Maracchia [1980], commented on by Knorr [1981]. 
7For instance, a Babylonian tablet from the mid-second millennium B.C., in 

writing for \/2 the sexagesimal value 1; 24, 51, 10, testifies to the early 
computational experience with such quantities; cf. Neugebauer [1957, 35, 50]. 

8Theaetetus 148 a-b; for a full discussion of the passage, see Knorr [1975, 
Chapter 3]. 

9Elements X, 9; a scholium assigns this theorem to Theaetetus (cf. Knorr 
[1975, 64, 97]). 

l0For an account of Diophantus' notation and a survey of the Arithmetica, 
see Heath [1921, II, 456 ffj. Diophantus introduces a terminology of powers 
extending indefinitely, and actually includes manipulations of higher powers, 
like the fourth and the sixth, in some of his problems (cf. ibid., pp. 506 f). 



EUCLIDEAN THEORY OF IRRATIONAL LINES 63 

uHeath [1926, III, 31; cf. II, 383]. 
12For a proof, see Knorr [1975, 232 f]. 
13 Pappus, Commentary, §1, 1; I translate from the Arabic text, ed. Thomson 

(Pappus [1930, 192]). The description of these three irrationals as "very 
well-known" (al-mashürajiddan) seems puzzling, and Thomson (who renders it 
"more generally known", p. 63) does not try to explain it. I would suppose the 
Arabic translator saw a term like gnörimöterai. If so, the sense would be not 
that these Unes are "familiar," but that they are "special" in relation to the 
others. In effect, Eudemus would be signifying that these three cases were set 
off from the others. Note that the property at issue, the expression of the 
irrational Unes as means, is known to Pappus in a form that embraces the other 
ten classes as well (Commentary II, 17 ff; cf. note 40 below). We would thus 
infer that the generalization had not yet been worked out by Theaetetus. 

uOn Indivisible Lines, 968 b 19: "the other [irrational Unes] which have 
recently been discussed, such as the apotome or the binomial." I follow the 
defense by Heath [1949, 255 f] of this rendering of the phrase in emphasis, 
against those who have proposed textual emendations. Heath seems not to 
perceive, however, that this reading is incompatible with his view that the 
names are due to Theaetetus. For there is a gap of over a half-century 
separating Theaetetus and the tract, so that its author could hardly refer to 
such studies as "recent." The anomaly disappears when one accepts that the 
terms "binomial" and "apotome" were introduced through the later develop
ment of Theaetetus' theory. 

l5Elements X, 21 and 36, respectively. I adopt an indirect method of proof, 
where Euclid follows a direct method. 

16On the definition of "rational," see Table I. 
17Pappus cites a form of this relation in his Commentary, II, 18 [1930, 141]; 

he gives its geometric representation in Collection III [1876,1, 70]. Among the 
arithmetic writers, it was called the "perfect proportion;" cf. van der Waerden 
[1963, 94] and Heath [1921,1, 85 ff]. 

^Elements X, 73. 
19Cf. X, 114. 

^Commentary, I, 10 [1930, 72-74]. 
21On Eudoxus, see Knorr [1975, Chapter 8, §4] and van der Waerden [1963, 

179-190]. I have proposed a revised view of Eudoxus' contribution to the 
theory of proportions in Knorr [1978]. 

22Proclus [1873, 67]. 

™ Elements IV, 10-11 via II, 11. 
24XIII, 6. 
25 For more detailed accounts of the construction, see Heath [1926, III, 

461-466] and Mueller [1981, 260-263]. 
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26 The definitive ancient statement of the method of analysis is by Pappus, 
Collection VII, preface [1876, II, 634-636]. This method is of central interest 
within my forthcoming study, The ancient tradition of geometric problems 
(Birkhâuser). 

27 If in Figure 2 lines EB, AG meet in L and AL is bisected at M, then since 
GL = s, we have that GM = y and MA = 8. 

28Since d2 : s2 : r2 = 5 + y/5 : 5 - \/5 :2, we have that d2 + s2 : 2sd: r2 = 
10 : 4/5 :2, whence that (d ± s)2: r2 = 5 ± 2^5 : 1. Since y, 8 respectively 
equal \{d ± s), the stated expressions for y2, 82 follow. 

29Note also that just as d is twice the arithmetic mean of its terms so also s is 
twice their harmonic mean. For h : y — 8 = 2yô : y2 — 82 = \y[5 : y/5 . As one 
can infer from the relations in Table II, this property of the harmonic mean 
entails that a2 — 5b2, so that any line c — d for which it holds must be 
commensurable in square with the line s = y — 8 (and also y : 8 = c : d; cf. 
note 38). One suspects that this special feature of this construction of s was a 
factor in the transition from the harmonic irrationals of Theaetetus to the 
apotomes of Euclid. 

30Heath [1926, III, 7, 88, 164] and van der Waerden [1963, 172] do not even 
raise the issue; Mueller [1981, 274] writes: "I know of no satisfactory explana
tion for the term 'minor'." An ancient scholiast proposes that Euclid named 
the "major" by virtue of the fact that the rational area c2 + d2 is greater than 
the medial area led (see Table II) "and it is necessary to order the naming 
from the speciality of the rationals" (Euclid [1969-, III, 225]). While the claim 
is true (he gives a proof), it hardly accounts for the naming of the "minor," 
where the same property holds. 

31 While it is obvious that c, d are the positive roots of the biquadratic 
equation x4 — rax2 + \r2b2 — 0, facts of this sort would seem of little use in 
piecing out the objectives underlying Euclid's theory. Nevertheless, many 
interpretive efforts have tried to utilize just such relations (see next note). 

32 One thus notes the prominence of the relation given by Chasles as the 
formula: {Â^B = i\A + \{A2 - B2)x/1 ± yj\A - \(A2 - B2)x/1, and 
can agree with Junge [1930, 23] who styles it the "quintessence of Book 10". 
Heath follows other commentators in attempting a more ambitious algebraiza-
tion (cf. note 2). He first represents the six binomials and apotomes as the 
roots x of the quadratic x2 ± 2ax • p ± ft • p2 — 0, so that the irrational lines x' 
(for which x'2 — x • p) become the roots x of the biquadratic equation x4 ± 
2ax2-p2 ± /î-p4 = 0 (Heath [1926, III, 5-7 and passim]). For instance, the 
binomial/apotome p ± pyfk (for k a nonsquare rational number) corresponds 
to a = 1 + k and /? = (1 — k)2. But this scheme hardly lays bare Euclid's 
motives. Why, for instance, would he wish to make these choices for the 
coefficients? Indeed, why would he be interested in classifying the roots of 
biquadratic equations in the first place? 



EUCLIDEAN THEORY OF IRRATIONAL LINES 65 

33 These relations are summarized in Table II. In view of Theaetetus' 
adoption of the means for defining the irrational lines, the following problem 
is likely to have been considered within the development of the theory: under 
what conditions is the irrational line c — d commensurable with the harmonic 
mean of c and dl Since h : c - d = led: c2 - d2 = rb : r(a2 - b2)l/2

9 it 
follows that bC(a2 - b2)l/2

9 whence that a0(a2 - b2)l/2 (for a0b). If we 
set b : (a2 — b2)x/1 — m:n, then b2 : a2 = m2 : m2 + n2, where m2 + n2 can
not equal a square integer (cf. the discussion of the lemmas to X, 29 at the end 
of §IV below). There will be cases where this holds among the 4th, 5th and 6th 
classes of subtractive irrationals. Note that b2: a2 = 1:5 corresponds to the 
irrational side of the regular pentagon inscribed in the circle of rational radius 
(cf. note 29 above). 

34 In X, 42 Euclid can assume from X, 26 that the difference of medial areas 
cannot be a rational area; the rest of my proof here thus effects the result of 
that theorem. 

35 Euclid proves the irrationality of the apotome in X, 73, so cannot use this 
result in X, 26, but rather must provide an argument effectively duplicating a 
portion of the later proof. Since I have already established the irrationality of 
the apotome, it can be assumed here. 

36 On this technique see Knorr [1976, Chapter 6, §4] and van der Waerden 
[1963, 118-124]. Some form of these methods was already famihar within 
Greek geometry in the latter part of the fifth century B.C.; their strong affinity 
with methods from the much older Mesopotamian metrical geometry discour
ages the view of their independent invention by the Greeks. 

37Heath [1926, III, 147]. 
38Mueller notes [1981, 283, 299] that Euclid must assume a stronger result 

when he later claims that the sides of the icosahedron and dodecahedron 
inscribed in the same sphere (assumed of rational radius) are incommensurable 
with each other in square (XIII, 18): namely, that if two irrational lines are 
commensurable with each other in square, they will fall within the same class 
of irrationals. (Thus, since the sides are, respectively, a minor and an apotome, 
they cannot be commensurable in square.) We may observe that yet a stronger 
claim can be established: that if c ± d9 c' ± d' (taking signs in the same order) 
are irrational lines commensurable with each other in square, then c: c' = d: d'. 
We need only consider the additive case: setting (c + d)2 = r(a + b) and 
(c' + d')2 = r(a' + b'\ since c + d9 c' + d' are commensurable in square, 
a + b and a' + b' will be commensurable with each other in length; hence, by 
the theorem on commensurable binomials (X, 66) a + b, a' + b' will fall 
within the same order of binomials, for a : b will equal a' : b'. Thus, c + d and 
c' + d' will fall within the same class of additive irrationals. Moreover, since 
(c + d)2 : (c' + d')2 = a + b: a' + b' = a: a' = b: b', and c2 + d2 : c'2 + 
d'2 — ra: ra\ and led:1c'd' — rb:rb' — a: a\ it follows after subtracting 
that {c- d)2:{c' -d')2 = a:a'. Thus, c - d: c' - d' = c + d: c' + d\ 
whence c : c' = d : d\ as claimed. 
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39Heath [1926, III, 158] incorrectly supposes that in the scholium after X, 72 
Euclid also means to show the distinctness of the orders of the binomial. But in 
fact, this result is obvious from their definitions; Euclid states it here in order 
to establish the distinctness of the associated classes of irrational "sides". 

FIGURE 3 

40Pappus somewhat finesses the difficulty by stating the theorem thus: when 
a rational or medial area is applied to [i.e. divided by] an irrational line its 
width will be the cognate irrational. This might be read in either of two ways: 
that there will be some rational or medial area which is the product of the 
irrationals c + d, c — d; or that any rational or medial area A = (c ± d) • x 
gives rise to an irrational Une x falling within the cognate class. Pappus does 
indeed intend the latter, as he goes on to prove in §11, 21-23.1 will sketch his 
proof for the additive irrational c + d, when A is rational (II, 22). In a lemma 
(II, 21) Pappus shows geometrically that if A = (c -f d) • x = r2 and (c 4- d)2 

= r(a + b) and x2 = r-y9 then y-(a + b) = r2. From Elements X, 112 it 
follows that y = a' — b\ an apotome of the same order as the binomial a + b\ 
since x2 = ry, one has that x is a sub tractive irrational of the same class as the 
additive irrational c + d. In II, 23 Pappus adapts this result for the case of 
medial area A'. For if A' = (c + d) • x' — r • r', it follows that x' : x = r' : r. 
Thus x' is commensurable in square with line x already determined, and so 
falls within the same irrational class, namely that cognate to c + d. Junge notes 
that neither Pappus nor Euclid actually proves the theorem needed for this 
conclusion (p. 150, n 131); it is the same as that discussed in note 38 above. We 
observe that the present theorem of course applies for the subtractive irration
als c — d, although Pappus does not state this result. He needs only the 
additive cases for effecting his principal theorem on the means: that given any 
irrational c + d, the harmonic mean of its terms c, d is a subtractive irrational 
in the class cognate to c + d (II, 19 f; for h(c + d) = led, a rational or medial 
area). One may note further a corollary to both of Pappus' theorems here, but 
not stated by him, is that the irrational c' ^ d' derived in either of them in 
association with the irrational c ± d is such that c' : c = d' : d (cf. note 38). 
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41Heath [1926, III, 255]. 

A2Ibid., p. 246. 

43Commentary on Book X, §11, 17 ff; cf. note 40 above. Note that Pappus' 
treatment can be considerably abridged via the relations given in note 33 and 
surely available to him: the harmonic mean will be a line commensurable in 
square with c — d, since h: c — d= b: (a2 — b2)l/2, a ratio of rational Unes. 
Thus, by the result in note 38 (which Pappus in fact assumes in his own proof 
in II, 23) h will be an irrational line c' — d' of the same class as c — d and for 
which c: c' = d: d'. 

"Zeuthen [1896]. 

45An "analysis" deriving the fourth binomial might run thus: assuming a, b 
rational, there are integers m, n such that b2 : a2 — b2 = m: n. Thus, b2: a2 — 
m: m + n and a2 — b2 : a2 = n : m + n. Since (1) from the definition of the 
fourth binomial a is commensurable neither with b nor with (a2 — b2)l/2

9 it 
follows that (2) neither of the ratios m: m + «, n\m-\- n can be a ratio of 
square integers (cf. X, 9). In Euclid's synthesis of the problem of finding the 
fourth binomial in X, 51 integers m, n satisfying conditions (2) are assumed, 
and from them the lines a, b are produced and shown to have the properties 
(1). It is noteworthy that Euclid does not attempt to justify the assumption of 
m, n satisfying (2) by any explicit procedure or construction. The lapse is not 
particularly serious, if one takes his effort here to be the reduction of the stated 
problem to another; but it would surely be striking, if his intent here were to 
effect a proof of the existence of the fourth binomial. 

^Proclus [1873, 67]. 
47Pappus [1876-, II, 652-654]; cited by Heath [1921,1, 432 f]. 
48 Note that since Book X in one important instance does not establish a 

result adequate for the purposes of the application in Book XIII (cf. note 38), 
one cannot well suppose that Book X was specifically directed toward the 
needs of Book XIII. This observation is developed below. 

49Pappus [1876, I, 178-186]; cf. Heath [1926, III, 9 f]. Pappus does not 
indicate the wider geometric context of his two constructions, nor does he 
identify the geometers responsible for them. 

50For a survey, see Heath [1926, III, 255-259] and Junge [1930, 26-29]. 
51 See the collection of "testimonia" in Euclid [1969-, III, xvi-xxix]. The 

commentators rarely get beyond definitions and generalities (cf. also Proclus 
[1873, 60 f]). In addition to the theorems discussed above in notes 40 and 43, 
Pappus includes the adaptations of Euclid's application theorems X, 60-65, 
97-102, where the Une of the application is a medial instead of a rational. This 
yields that if (c + d)2 is applied to a medial line m, the resulting width will be 
a first or second bimedial; similarly, if (c — d)2 is applied to m, the result will 
be one of the two bimedial differences. Pappus' method is as follows: let 



68 WILBUR KNORR 

(c ± d)2 — m-x — r(a ± b), and set mc' = ra, md' — rb. Consider first the 
case where c ± d are of classes 1 or 4 (Pappus, II, 27 for the additive cases, 30 
bimedial difference), but when m202cd, then b'0aCr, so that x will be a 
second bimedial (or difference). If next c ± d is of class 2 or 5 (where a 0 r and 
bC r), we note that m2 : c2 + d2 = rr' :ra = 2b: b'. Thus, if m 2 Cc 2 + d2, 
for the sub tractive); here aCr and b0r. Since mc' = ra, a rational area, c' 
will be medial (Pappus, II, 26; cf. Elements X, 25). Further, md' = rb is a 
medial area. Pappus now distinguishes two cases: if m2Cmd', then mCd' so 
that d' is medial {Elements X, 23); he shows also that here c' • d' is rational, so 
that c' ± d' is a first bimedial line. When m20 md', then d' will be a medial 
line commensurable with m in square only; he shows that c' • d' is here medial, 
so that c' ± d' is a second bimedial. Similar treatments follow for the additive 
irrationals of cases 2 and 5 (II, 28), 3 and 6 (29), and the subtractive classes 2 
and 5 (31), 3 and 6 (32). 

It is interesting to see how this works out via the alternative "side" 
representations of the irrationals. As before, we set (c±d)2 = m-x = 
r(a ± b)\ next set (a ± b)2 = r'(a' ± b'), where m2 — r-r'. Since a ± b is 
binomial (apotome), a' ± b' will be a first order binomial (apotome) relative to 
r'; that is, a'Cr' and a'C(a'2 - b'2)l/2. Now, x2 : r2 = (a ± b)2 : m2 = (a' 
± 60 : r, so that x2 = r(a' ± b'). Since 0' C(a'2 - b'2)1'2 anda'Cr'fir (for 
r • r ' = m2 is medial), a' ± b' will be a second or third order binomial (apotome) 
relative to r. Thus, x will be a first or second bimedial (or bimedial difference). 
To distinguish the cases, we consider first c ± d to be of class 1 or 4 (so that 
aCr and b0 r); since m2 : led = rr' : rb — 2a\bf (for rb = 2cd, and r'b' = 
2tf6): when m2C2cd, then b'CaCr, so that x will be a first bimedial (or 
b'CbCr,so that x will be a first bimedial (or difference); but if m20c2 + J 2 , 
then 6' 0 6 C r, so that x will be a second bimedial (or difference). For the last 
cases c ± d of class 3 or 6 (where « 0 r and b0 r), the pattern partly breaks 
down (as it must also for Pappus). In view of the relations used in the previous 
two cases, if either m2C2cd or m2Cc2 -\- d2 (note that it cannot be com
mensurable with both, since a0b), then b'Qa0r in the former case, or 
b'Cb0 r in the latter; thus x will be a second bimedial (or difference). But if 
m2 is incommensurable with both 2cd and c2 + d2, we cannot specify in 
general when b' C r and when b' 0 r, so that x may accordingly be either a first 
or a second bimedial. Note that in all these instances, the conditions determin
ing whether x is a first or a second bimedial (or difference) can be referred 
back to the form adopted by Pappus via the relation rb' — 2c'd'\ for in the 
first bimedial, b' C r, whence c'd' is a rational area; when b' 0 r, then c'd' is 
medial (see Table II). 

52Mueller [1981, 271]. 
53At the time of his course of lectures on the history of the Pell equation 

(Institute for Advanced Study, 1978-79), Professor A. Weil expressed to me 
his disappointment over Euclid's utter failure to perceive this potentially 
fruitful development of the theory of Book X. The meager hints we might glean 
from Archimedes and Diophantus are little encouragement for supposing that 
the Greeks recognized these possibilities or pursued them to any length. 
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54Aristotle's theory of the syllogism in Prior analytics I and II might be 
compared with Euclid's Book X as an effort toward the complete systematiza-
tion of a field. But other mathematical works, both by Euclid and other 
geometers, rarely even adopt the axiomatic form; and when they do, as in 
Archimedes' Plane equilibria I or the Euclidean Optics, the execution is far 
from complete, whether from the logical or the technical viewpoint. 

55Is this what van der Waerden has in mind when he praises, "The author 
succeeded admirably in hiding his line of thought..."? [1963, 172]. Note that 
he wishes to identify that author as Theaetetus. 

56Cf. Commentary II, 17 and 18 [1930, 138, 143]. 
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