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The publication in 1687 of Isaac Newton's monumental treatise Principia 
Mathematica has long been regarded as the event that ushered in the modern 
period in mathematical physics. Newton developed a set of techniques and 
methods based on a geometric form of the differential and integral calculus for 
dealing with point-mass dynamics; he further showed how the results obtained 
could be applied to the motion of the solar system. Other topics studied in the 
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Principia include the motion of bodies in resisting fluids and the propogation 
of disturbances through continuous media. The latter theory, though less 
successful than his earlier treatment of point-mass dynamics, was nonetheless 
an important stimulus for future research. 

The success and scope of the Principia Mathematica heralded the arrival of 
mechanics as the model for the mathematical investigation of nature, as the 
subject which would remain "the cutting edge of science" for the next two 
centuries. Indeed, the very extent of Newton's achievement has had the 
unfortunate effect of fostering a simplistic and incorrect view in the history of 
physics, according to which the entire modern edifice of "Newtonian mecha
nics" is identified with the contents of the Principia. In fact, a survey of the 
hundred or so years which followed the appearance of this treatise reveals that 
is was simply a first, if exceedingly important, step in the erection of such an 
edifice. The period 1687-1788 was one of energetic and creative activity 
involving the invention, mathematical development and application of mecha
nical principles and techniques by a distinguished group of researchers: Brook 
Taylor, the brothers Jacob and Johann Bernoulli and the latter's son Daniel, 
Leonhard Euler, Alexis Clairaut, Jean d'Alembert and Joseph-Louis Lagrange. 
In particular, it was not until the early 1750's that the cornerstone of modern 
dynamical theory—the analytical equations which express the general principle 
of linear momentum ("Newton's second law")—first appeared in Euler's study 
of rigid body analysis. It was these researches of Euler combined with parallel 
work by d'Alembert and Clairaut which laid the foundations for the classical 
theory handed down to us today. 

The evolution of dynamics', vibration theory from 1687 to 1742 by John T. 
Cannon and Sigalia Dostrovsky is a contribution to our understanding of the 
period that follows the publication of Newton's Principia but precedes the 
appearance of Euler and d'Alembert's general methods at the middle of the 
next century. The authors trace the development of research on a range of 
problems involving small vibrations: the propogation of pressure waves through 
continuous media; the vibrations of strings, rings and rods; the oscillations of 
linked pendulums and hanging chains; the bobbing and rocking of a floating 
body. Their primary concern is to exhibit through detailed explication of the 
original sources the progress made in the analysis of such systems. A leading 
idea motivating the discussion is that Newton's second law during this period 
was successfully applied only to systems involving one degree of freedom 
(central force motion was an important exception). Such a unitary system 
arises in the problem of the center of oscillation of a rigid pendulum, in which 
one must determine the length of a simple pendulum that oscillates in unison 
with the given rigid pendulum. In more complicated systems—the linked 
pendulum, the vibrating string—involving many or infinitely many degrees of 
freedom, the mechanicians of the period had recourse to special methods. 
These methods either used the second law as a consistency condition on the 
actual motion or reduced the whole analysis to the case of a unitary system. 

The authors' main point is illustrated in their account of the research of 
Brook Taylor and Johann Bernoulli on the vibrating string. Interest in this 
problem during the period stemmed in large part from a fascination with 
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musical phenomena (the vibrating string itself was sometimes referred to as the 
"musical" string). Taylor's analysis appeared in his Latin treatise Methodus 
Incrementorum (1715), the same work incidentally which first presented to the 
world the series expansion that bears his name. Taylor employed the fluxional 
notation invented by Newton and favored by the British school. His analysis 
was recast in 1728 by Bernoulli using the familiar Leibnizian notation by then 
widely in use on the continent. We shall describe what is in substance 
Bernoulli's treatment. Assume a string is stretched along the z-axis in the z — y 
plane from z — 0 to z = / with tension P and mass density p. The string is 
given a small displacement from its equilibrium position; the problem is to 
determine the shape it assumes in the ensuing small vibrations and to calculate 
the period and frequency of these vibrations. Bernoulli first shows using 
elementary geometry that the force acting on the mass element pdz equals 
P(d2y/dz2) dz and acts in a direction perpendicular to the z-axis. At this point 
he could, if he had at his disposal the momentum principle furnished by 
Newton's second law, simply equate this force to the quantity (pdz)(d2y/dt2) 
and thereby obtain the wave equation. Bernoulli, however, following Taylor 
before him, proceeds otherwise. He imagines that each mass element of the 
string vibrates as would a simple pendulum of length L (where L is to be 
determined). If the displacement of an element pdz suspended from such a 
simple pendulum equals y then the restoring force is given by — (g/L)(pdz)y, 
where g is the acceleration due to gravity. This force in turn must equal the 
actual force calculated above: 

(1) P(d2y/dz2) dz=- (g/L)(pdz)y, 

from which we obtain the equation 

(2) (d2y/dz2) = (~g/L)(p/P)y. 

(2) may now be integrated to yield 

(3) y=±csm(j(g/L)(p/P)z), 

where we have expressed in functional notation what Bernoulli describes in 
geometrical language. (Bernoulli states that the solution to (2) is the curve 
known as the "companion to the trochoid [i.e. cycloid]", a characterization of 
the sine function which survived well into the 18th century and is explained in 
Morris Kline's Mathematical Thought from Ancient to Modern Times (Oxford, 
1972, p. 351)). Using the end condition^ = 0 when z = / we obtain a value for 
L: 

(4) L=(gp/P)(l2/*2). 

Bernoulli has discovered that the vibrating string assumes the shape of a sine 
curve. It remains to find the period and frequency of the vibrations. This 
however is now straightforward since the device used in analyzing the string 
reduced the problem of finding these values to the analysis of the small 
vibrations of a simple pendulum of length L. The latter system, involving one 
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degree of freedom, was known from Newton's second law to be governed by 
the equation 

y=-(g/L)y. 

The solution of this equation, y — h sin((^/g/X )t + ô), immediately yields the 
desired values for the period T and frequency v\ 

(5) r = 2 W ( V g ) , v=j{g/L)/2«. 

Using the value for L given by (4) we obtain the final result for the vibrating 
string: 

(6) r = 2 / / ( p / P ) , v=]l(P/p)/2l. 

Bernoulli has therefore derived by mathematical analysis the result known in 
musical theory of the 17th century as "Mersenne's law", asserting the propor
tionality of the pitch or frequency to the quantity (JP/p ) / / . 

Central to Bernoulli's solution is the assumption that the elements of the 
string undergo small vibrations as simple pendulums all of the same period. 
Dostrovsky and Cannon refer to this assumption as the "pendulum condition"; 
it is the idea that underlies all investigations of oscillatory phenomena during 
this period. Use of the pendulum condition tended to be combined with certain 
restrictions on the motion. Thus both Taylor and Bernoulli assume in their 
analyses that the elements of the string arrive simultaneously from one side at 
the equilibrium configuation along the z-axis. As a result, they only determine 
the first fundamental mode. The authors suggest that the strong geometric 
viewpoint inherent in the geometric integration of equation (2) discouraged the 
investigation of higher modes and acted as an obstacle to the discovery of the 
principle of superposition. (The latter was eventually recognized as a funda
mental law by Daniel Bernoulli during the 1750s in the famous debate over the 
general solution to the wave equation.) 

Johann Bernoulli's analyis in 1728 of the vibrating string was only one 
example of a much broader interest in vibration phenomena. A problem which 
received increasing study toward the end of the period under consideration was 
the analysis of the linked pendulum and hanging chain. Key memoirs on this 
topic were presented to the St. Petersburg Academy during the 1730s by 
Johann's son Daniel and by Leonhard Euler. The solution to this problem, 
which required consideration of Laguerre polynomials and Bessel functions, 
served to focus attention on higher modes and to shift the emphasis of the 
investigation from geometric to analytic methods. One of the great merits of 
the Cannon and Dostrovsky book is that they provide, as an appendix, 
facsimiles of Daniel Bernoulli's two Latin memoirs of 1733-34 along with an 
English translation. A study of these memoirs in conjunction with the explica
tion provided in the text should assist the reader in attaining what the authors 
term "a feel for physics in the age of Newton and the Bernoullis". 

Cannon and Dostrovsky have mastered a large amount of difficult source 
material. Indeed, it is only the condensed nature of their presentation that 
prevents the book from being much longer. Unfortunately, the authors are not 
always completely successful in marshalling their material in a way that is 
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readily comprehensible to the mathematically informed reader. This problem 
arises in part from the narrative and notational difficulties of explaining 
outmoded mathematics in modern language. A related problem, one connected 
to the authors' historical methodology, is their practice of examining a given 
mechanical argument in isolation from the wider text in which it appears. 
These difficulties are apparent in the opening chapter where Cannon and 
Dostrovsky discuss Newton's analysis of the pressure wave in Propositions 
XLVII-XLIX of Book Two of the Principia. These propositions contain 
Newton's celebrated calculation of the speed of sound, an estimate that was for 
lack of an adiabatic correction 20% below the true value. The authors' 
discussion is marred by an inadequate description of two of the original 
propositions, a failing which makes their account very difficult to follow. This 
is especially unfortunate since their conclusion, that Newton had at this early 
date grasped clearly the concept of mechanical strain, is new and ultimately 
convincing. 

The evolution of dynamics', vibration theory from 1687 to 1742 is a substantial 
addition to the survey of early 18th century mechanics provided three decades 
ago by Clifford Truesdell in his extensive introductions to the collected works 
of Leonhard Euler. Despite its occasional narrative weaknesses the book is 
destined to become a standard source. It will be of assistance to the specialist 
in the history of the exact sciences who wishes to contribute to our under
standing of the still largely unexplored world of 18th century mathematics. In 
addition, the nonspecialist with some background in vibration theory will be 
rewarded by a close study of its contents. Cannon and Dostrovsky state in the 
preface that mathematics "provides a powerful tool with which to grasp modes 
of thought from former times". To this one might add that the converse is also 
true: knowledge of earlier modes of thought provided by historical investiga
tion serves to heighten our appreciation for the mathematics of today. 
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The objects studied in differential geometry can alternatively be defined by 
using or by avoiding local coordinates. There are even definitions which can be 
thought of as both using and avoiding coordinates. Consider, for example, a 
first order partial differential operator 

1=1 QXi 


