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ASYMPTOTIC BEHAVIOUR OF EISENSTEIN INTEGRALS 

BY E. P. VAN DEN BAN1 

Let G be a noncompact connected real semisimple Lie group with finite 
centre. The asymptotic behaviour of Eisenstein integrals associated with a 
minimal parabolic subgroup of G has to a large extent been studied by Harish-
Chandra (unpublished work, see [12] for an account, and later in a more 
general setting in [5-7]). Other references are [9 and 10]. Harish-Chandra's 
work depends heavily on a detailed study of systems of differential equations 
satisfied by these integrals. In [1] it is shown that these systems can be 
transformed into complex differential equations of the regular singular type; 
the asymptotic behaviour of their solutions is studied by essentially applying 
the classical Frobenius theory. 

In this announcement we present some results obtained by using another 
classical method, namely the representation of solutions of such equations 
by compact complex contour integrals (for the hypergeometric equation this 
method goes back to [8]). These integral representations can serve as the 
starting point for estimation by application of the method of steepest descent. 
This is closely connected with the use of the method of stationary phase in 
[2], where the asymptotic behaviour of Eisenstein integrals with respect to the 
spectral variable is studied. 

I would like to thank Professor J. J. Duistermaat for suggesting this problem 
and for the many stimulating discussions we had. 

Let G = KAN be an Iwasawa decomposition. Let <S and 21 be the Lie 
algebras of G and A, A the root system of (6,21), A + the set of positive 
roots corresponding to TV; let A+ + = {a G A + ; | a £ A + } and let /c: G —• 
K, H: G —• 21 be defined by x G K{X)exp H(x)N (x G G). Moreover, let 
ri, T2 be two mutually commuting representations of K in a finite dimensional 
complex linear space V (for convenience of notation we let them both act 
on the left). Let M be the centralizer of 21 in K and set VM = {v G 
V;Ti(rn)T2(m)v = v(mG M)}. For X G 21* (the complexified dual of 21), the 
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Eisenstein integral E(\ : •) = E(G : P : r : X : •) : G - • End(V) corresponding 
to the minimal parabolic subgroup P = MAN of G is defined by 

E{\ : x) = [ e^x-^H(xfcVi(/c(x/c))r2(A;)d/c (x G G). 

Here p=\ 2aeA+ dim(®a) * a and dk is the normalized Haar measure of K. 
In this announcement we give a formula describing the asymptotic be

haviour of E(\ : O)\VM as a € A tends to infinity along a wall of the positive 
Weyl chamber A+ = exp(2l+). 

Notations. If s G W, the Weyl group of (<S,2l), we write A++(s) — {a G 
A++;sa G - A + + } and ~NS = TV 0 s^iVs, where AT = 0JV, 0 is the Cartan 
involution corresponding to K. If X G 21*, a G A++, s G VK we set Da(\) — 
exp(47r(X, a)(a, a ) - 1 ) — 1 and 

Da(\)= n D«M-

Here (, ) denotes the dual of the restriction of <5c's Killing form to 2tc. If 
j G {1,2}, 5 G W, X G 21*, Im(X,a) < 0 for all a G A++(s), then it is well 
known that the integral 

IS(TJ : X) = ^e -^+" )«Wr J ( / c (n ) )d 0 n 

converges absolutely and defines a linear endomorphism of VM depending 
holomorphically on X. Here don denotes the Haar measure of Ns correspond
ing to the Cartan inner product (•, •) = — £(•,#(•)). 

LEMMA. Let seW, j G {1,2}. Then the map 

Is(rj : •):\*-+Da(\)Ia(Tj :X) 

extends to an entire holomorphic map 21* —• End(VM). 

INDICATION OF THE PROOF. We prove this lemma by representing I8(TJ : •) 
as an oriented integral over a compact smooth cycle 75 of dimension dim(iV5) 
in the natural complexification (AÔ.G(NS))C ofAdo(Ns) in (Aut <8C)°- The in
tegrand is a suitable branch of a multivalued analytic extension of exp[—(z'X + 
P)H(-)]TJ(K,(-)) times an invariant holomorphic differential form and depends 
holomorphically on X, whence the assertion. The cycles ^s are first explicitly 
constructed for groups with dim(A) = 1 and then for general groups by a 
multi-valued analytic continuation of the Bhanu Murti-Gindikin-Karpelevifc 
induction procedure (cf. [3]). For the case T\ = r^ = trivial, details can be 
found in [11]. 

More notations. Let S be the set of simple roots in A + + , let F c S and 
let A F = (Z • F) n A. Moreover, let 2lF = n a € F k e r a, *2l = (2ti^)-L n 21, AF = 
exp(2lF) and *A = exp(*2t). If CF > 0, *C > 0 we put AF(CF) = {a G 
AF ; aa : = ea loe a > CF for a G S - F} and *A(*C) = {*a G *A; |a(log *o)| < 
*C for a G F } . Let C s - F denote the set of functions (S - F) - • C and let 
2 F : AF -> C S ~ F be defined by {zF(a))a = a~a (a G S - F). If R > 0 we 
set £F(i?) = {2 G CS~F;\za\ < R(aE S-F)}. The centralizers of 2tF in 
W, K, G are denoted by WF, KF, MF\ respectively. MF\ is the reductive 
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component of the standard parabolic Pp. If a G WF \ W (coset space), we 
write w(a) for the representative of a in W with A++(w(o-)-1) n A/r = 0 . 
Then A++(W(<J)) = {a G A++ - o — ^ A F ) ; » < 0 on o - 1 ^ * ) } . Finally we 
define 

DF(\)= n A,(X) (xe«:). 
a€A++-AF 

THEOREM, PART A. Let *C > 0. T/ien t^iere exists a constant CF > 0 
and /or every a G W F \ VF a map VF,<r : 21* X *A(*C) X ^ ( C ^ 1 ) - • End(VM), 
holomorphic in the first and last and real analytic in the second variable, such 
that the following holds. If X G 21* and 2(X,a)(a,a)_1 £ iZ /or aii a G A-1""1", 
then 

£(X : *aa)|VM = £ ^ ^ " ^ F M ^ X ) - 1 ^ , ^ : *a : zF{a)\ 
aewF\w 

for every *a G *A(*C), a G AF(CF). 

INDICATION OF THE PROOF. This theorem is proved by using the above 
lemma, Harish-Chandra's theory of the r-radial differential equations coming 
from the centre of the universal enveloping algebra of <ÔC and the techniques 
developed in [11]. In particular, an integral expression for 

^F,a(X : *a : z) 

over the compact smooth cycle KF X ̂ w(a) X ^W'{G) is given. Here K> denotes 
the centralizer of 2l/r in K and w'(a) is the element of W determined by 
A++(w'(a)) = {a G A++ - a~\^F)\ct > 0 on o*~1(2l+)}. This integral 
representation will serve as the starting point for a more detailed study of 
\^F,<T'S asymptotic behaviour by estimation of the integrand (cf. also [11]). In 
particular, substitution of z = 0 in the integral straightforwardly gives 

THEOREM, PART B. Leta€WF\W. Thenforall\e%*c,*ae*Awehave 

•^(X: -a :0 ) = ^ £ ) 
vol(Kj?) 

E(MFi : ( P n M F i ) : r : w{a)\ : *a)o[T1{w(a))T2{w,(a))] 

°IW(<T){TI : -X) o / ^ ( ( J ) ( T 2 : X). 

Here vol(-) denotes the volume with respect to the Cartan inner product on 0 . 

REMARK. For real values of X, the formulas in the above theorem agree 
with Harish-Chandra's theory of the constant terms of Eisenstein integrals 
(cf. [4-7]). 

I would like to express my gratitude to the Institute for Advanced Study 
in Princeton, where this paper was written. 
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