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A COMPLETELY INTEGRABLE HAMILTONIAN SYSTEM 
ASSOCIATED WITH LINE FITTING IN COMPLEX 

VECTOR SPACES 

BY ANTHONY M. BLOCH 

Introduction. Over the past decade there has been a great deal of work 
on the explicit integration of completely integrable Hamiltonian systems. (See 
Adler and Van Moerbeke [1], McKean [9], Moser [11], Mumford [13].) Among 
the systems that have been studied are the free n-dimensional rigid body, the 
Euler-Poisson equations, geodesic flow on an ellipsoid, Neumann's equations, 
the Toda lattice, and Nahm's equations. The flows of these systems can be 
shown to linearize on the real part of the Jacobi variety of an algebraic curve 
associated with the system (see Adler and Van Moerbeke [1], Griffiths [7]). 

Now, all of the above systems, except Nahm's equations, which arise in the 
theory of monopoles, come from problems in classical mechanics. 

Here we present and explicitly integrate a completely interable Hamiltonian 
system that arises in a statistical problem—the fitting of lines to a data set 
in a complex vector space. 

Remarkably, this system fits into the general scheme for integrating systems 
of "spinning top and ellipsoid type" developed by Moser [11] and Adler and 
Van Moerbeke [1]. Further, both the considered integrals and the flow have 
an interesting statistical meaning. 

1. Let Cn denote complex n-dimensional euclidean space with orthonormal 
basis ti,i — 1 , . . . , n. Let Xi = X^=i A -̂ej;, i = 1 , . . . , p be p data points. Then 
the total least squares estimate (see Golub and Van Loan [6]) of a d-plane 
fitted to the data set is given by minimizing the total perpendicular distance 
of the points from the plane. (In the case of lines this corresponds to the first 
principal component of the data (see Kendall [8]).) 

The distance function is given by 

H(Q) = TrC{I-Q) = TrCP, 
where P = I - Q, Q = orthogonal projection matrix of Cn onto the d-plane, 
and C is a matrix with entries Ckj = Yli A^jA^. 

Now let Gc{d,n) = the complex Grassmanian of d-planes in n-space, 
u(n) = the Lie algebra of the unitary group U(n), h(n) = n x n Hermi-
tian matrices. Note that P,C G h(n), P having rank n — d. Remarkably then, 
H is the restriction of a linear functional to Cc(d, n), viewed as an adjoint 
orbit of u(n) (with rank n — d matrices). Further, since U(n) is compact, 
adjoit and coadjoint orbits may be identified via the Killing form. Then H 
may be regarded as Hamiltonian on an adjoint orbit of u(n) with the inherited 
Kostant-Kirilov symplectic structure. 
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Now H lies in a maximal toral subalgebra of u(n). Hence, we have a torus 
action on G(d, n), and the Hamiltonian H has an almost periodic vector field. 
The dimension of the image of the moment map (see Atiyah [2], for example) 
arising from this action is n — 1 (since there is a trace condition on Q). Thus 
in the case d = 1, where the adjoint orbit is CP n _ 1 , the system is completely 
integrable. 

We now proceed to analyze this case in detail, carrying out the explicit 
integration. We remark that proof of integrability via the moment map is far 
from providing an explicit solution of the Hamiltonian flow. 

2. Integration is carried out by describing the motion of a Lax pair with 
parameter and deriving action angle coordinates via the associated algebraic 
curve. 

Now consider the Hamiltonian H(Q) = Tr CQ. We have 

THEOREM 1. For H(Q) = Tr CQ, the Hamiltonian equations on an ad­
joint orbit ofu(n) are given by the Lax equation 

(i) Q = lQ,c\. 

To (1) we may associate the Lax equation with parameter 

(2) (Q + ÇC) = [Q + t;C,C}. 

PROOF, if is a left invariant function on the tangent bundle TU(n) of 
U{n). (1) then follows from a theorem of Raitu [14]. We see that (2) reduces 
to (1). 

With our system we then associate the algebraic (spectral) curve 

(3) det(Q + iC - ni) = 0. 

An alternative and instructive viewpoint is to write H(Q) — Tr CQ2 and 
regard our problem as a limiting (highly degenerate case) of the generalized 
rigid body on U(n). The Lax equations then take the form 

Q = [Q,M], M = CQ + QM, 

and 

(Q + tC) = [Q + ÇC,M + tC2} 

(see [4] and [15]). 

3. One method for determining a basis for the integrals is to consider the 
coefficients of £ in the functions Tr(Q + £C)k, k = 2 , . . . ,n. For H(Q) = 
Tr CQ2 defined on a generic adjoint orbit, this gives Y17=2^ = n ( n ~ *)/2 
nontrivial integrals, precisely half the dimension of a generic adjoint orbit in 
u{n). These can be shown to be independent via a counting argument viewing 
u{n) as the normal subalgebra of sp(n, C) (see [10]). 
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In our limiting case Q2 = Q, the number of integrals is reduced but gives 
us 

THEOREM 2. A basis for the integrals of H = Tr CQ is given by Tr CQ, 
Tr C2Q,..., Tr Cn~1Q {for generic C). 

An interesting statistical interpretation of the integrals is to view Q as 
a density operator on n-dimensional Hubert space. Then the integrals are 
the expected values of Ck (in the quantum mechanical sense) or the higher-
dimensional moments of C. Tr(CQ)k also occur as integrals. These too have 
an interesting statistical meaning (see [4]). 

4. Our main theorem is 

THEOREM 3. LetQ = (q%3) be written Q = z®z, z = (2 , . . . , zn) e Cn, 
YM=I \zi\2 = 1, zi = Xi + yi, and diagonalize C, C = diag(ci • •-cn). Let 
H(Q) = Tr CQ. Then the algebraic curve associated with H is given by 

i V-c* 

and the Hamiltonian flow on an adjoint orbit of u(n), due to H, is given by 

qtj(t) = OLij exp(i(cj - a)t + /?tJ), 

where oti3, fiij are constants. 

PROOF. We use the arguments of Moser on rank 2 perturbations [11, 1]. 
Let Rxx — x <8> x, Tyy = y (g) y, Txy = x®y-y®x, and TZz = z ®z = Q. 
Then consider the complex rank 1 ( "real rank 2" ) perturbation of G given by 

L = L(x, y) = C£ + Tzz = C£ + Txx + Tyy + iTxy. 

The eigenvalues of L are in involution with respect to the symplectic struc­
ture Yll dy0 A dxj. Now from the Weinstein-Aronsjan formula, 

d e t f a - L ) _ 1 _ T r W / _ ! _ . 
det(»j-C) u w » - 1 *»> 

where 

w = I Qv(x) Qv&y) \ I 1 
v l Qnfay) Qniy) J \ - i 1 

Qr,(x,y) = (RnX,y), Qr,{x) = Qv(x,x), 

R^irjI-C)-1, 4n = TrWri. 

Note that, in contrast to Moser, detW^ = 0 here. For 77,77' in the resolvent 
set of C, {0n ,0n} = O(see [11]). 

Thus the spectral curve is given by 

det(77 - G + C^zz) = det(77 - C)(l - 0„) = 0, 

where ^ = £,~1Q>n{x) + £~1Qr){y)- Since C is diagonal, we find 
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Now let 
H(x' y) = w / f(v)<t>n{x, y) drj 

2™ J\r,\=R 
for suitable ƒ, where R contains the spectrum of C. Putting 

1 Z ^3 

we get 
1 n 

H{x,y) = izY^fic3)GAx^y)' 
3 = 1 

Choosing ƒ so f{cj) = c3, we get 

1 n 

i = i 

Then the equations of motion are simply 

. _ d # . OH 

which give the required result. 
Note also that, via Moser, we can get an independent derivation of the Lax 

pair (see [11]). 

5. The flow has the following statistical interpretation: It reflects the 
asymmetries in the distribution of data points or the relative importance of 
the principal components in a principal component analysis; it is a measure 
of sphericity (see [4, 12]). 

Finally, we note that we have added a system to the list of completely in-
tegrable "spinning top and ellipsoid" type systems (see [1]), where the matrix 
L(x, y) takes the form 

(a) a£ + Txy (iV-dimensional free rigid body), 
(b) a£2 + ÇTxy — Txx (geodesic flow on ellipsoid, Neumann's Problem), 
(c) OJ£2 + ÇTxy + (x®y + y®x — a) (central force problem on ellipsoid). 

To this list we have added 
(d) a£ + Txx + Tyy + iTxy (line fitting problem). 
I would like to thank Professor C. I. Byrnes for his valuable advice and 

comments. 
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