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The research of Shannon on information devices in the late 1940s, and in 
particular his paper [Sha] in 1948, formed a basis of quite extensive studies. 
The research inspired by his work has spread into several directions which by 
now are quite independent although there are, or at least should be, some 
connections. The theory of entropy is one of the directions and forms nowa
days a branch in probability theory. The theory of error-correcting (and 
detecting) codes is another direction, and the theory of variable-length codes, 
which is the topic of this book, forms the third direction. 

It should be made clear that despite their common origin the theory of 
error-correcting codes and the theory of variable-length codes have very little 
in common. The former is a beautiful application of commutative algebras, in 
particular the theory of finite fields, while the latter is connected to noncom-
mutative structures such as free semigroups. 

A systematic study of variable-length codes, or briefly codes, was initiated 
by M. P. Schützenberger in the mid 1950s, cf. [Se 1]. It is not too much to say 
that without Schutzenberger's contributions the theory of codes would not 
exist in the extent we know it today. Not only many of the major results of the 
theory are due to him, as is seen from the bibliographical notes of this book, 
but he also showed the direction in which to continue, via his original 
approaches in solving problems and via his conjectures. 

In the past 30 years the theory of codes has developed into an interesting 
branch of discrete mathematics which provides a number of nice and deep 
results, as well as challenging problems. Certainly the theory is connected to 
many other areas of mathematics. In a broad sense the whole theory can be 
considered as a part of theoretical computer science, and its connections to 
areas like combinatorics on words, automata theory, formal language theory 
and semigroup theory are close and manifold. 

It is a surprise to notice that Theory of codes is the first book devoted to the 
field. Of course parts of the theory have been included in other books, but so 
far it has been typical (and unfortunate) of the whole field that results have 
been scattered in the literature, and even some very important ones have not 
been easily available. In addition, many results have earlier been published 
only in French. So there definitely exists a need for a book on codes, and it is, 
in my opinion, very important that this book has appeared in such a highly 
respected series of mathematical textbooks. 

In order to discuss the book we recall that a code over a finite alphabet A is 
any subset X of the free monoid A* generated by A which satisfies: 

If xx • • • xn = yx • • • ym with xi9 yj e X, 
then n = m and xt = yt for /' = 1 , . . . , n, 
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or equivalently, any subset X of A* which is of the form h(B), where h: 
B* -» A* is an injective morphism (and B need not be finite). So the theory of 
codes can be considered as the study of injective morphisms of free semi
groups. This simple observation does not diminish the attractiveness of the 
theory. In fact, I would say, its effect is the opposite: It makes many problems 
easy to state, but not to solve, and thus mathematically challenging. 

The basic question to be asked is "When is a given subset X of A* a code?" 
This was answered by Sardinas and Patterson, cf. [SP], at a very early stage of 
the research: Define recursively subsets Un of A* as follows: 

u0 = x-lx-{\), 
Un+i = U~lX U X~lUn for n>0, 

where 1 denotes the identity of A* and e.g. X~lX = [y\ 3z e X: zy e X). 
Then X is a code if and only if 1 is not in Un for any n > 0. Clearly, in the case 
of finite X the above criterion yields an algorithm, referred to as the Sardinas-
Patterson algorithm, for testing whether a given set X is a code. Actually, an 
algorithm is also obtained in the case when X is recognizable, i.e., recognized 
by a finite automaton. The above Sardinas-Patterson algorithm is simple. 
However, and this is interesting, a detailed proof of its correctness is surpris
ingly involved (although elementary). 

It is worth noticing that already this basic question can be interpreted and 
solved in terms of automata theory, a connection which is clearly visible 
throughout the book. In these terms the problem is whether a given automaton 
is unambiguous, which is a very natural and well-known problem in automata 
theory. This approach yields an alternate solution to the Sardinas-Patterson 
algorithm: A finite set X ç A* is a code if and only if 

(J (xX* HyX*) = 0 . 
x,yGX 

x^y 

Hence, the problem is reduced to the emptiness problem of finite automata. 
Now the proof of the existence of an algorithm is easy, but the algorithm itself 
is extremely ineffective. 

The main goal of the theory is to try to give structural characterizations for 
families of codes as well as to provide effective methods for constructing all 
codes of certain types. In general, these problems are still very much open. In 
the case of two-element codes such a characterization is well known and easy 
to obtain: The set X = {x, y] c A* is a code if and only if x and y are not 
powers of a word which, in turn, holds if and only if xy # yx. This is a special 
case of a more general result known as the Defect Theorem. On the other 
hand, already in the case of three-element codes no such characterization is 
known! 

It follows that it is reasonable to study certain special classes of codes. For 
prefix codes, i.e., for codes X Q A* satisfying XA + n X = 0 , where A + = A* 
— {1}, a structural characterization is obvious since such codes can be 
presented as trees. For finite biprefix codes (which are " prefix codes both from 
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left to right and from right to left") a structural characterization can be 
achieved as well; however, it is much more complicated and, in fact, forms one 
of the highlights of the whole theory. This will be discussed more in a moment. 

A well-motived family of codes is that of maximal codes: A code X ç A* is 
maximal if it is not properly included in any code over A. The study of 
maximal codes (of a certain type) is one of the main trends in this book. There 
exist at least two reasons to study maximal codes. Firstly, since each code is 
included in a maximal one (cf. below), if something is known about the 
structure of maximal codes of a certain type, this also tells something about all 
codes of the same type. Secondly, from the point of view of applications the 
maximality is an important property: It tells that the full capacity of a code is 
utilized. 

There is a surprisingly simple criterion, due to Schützenberger, cf. [Se 1], to 
test whether a given finite code X ç A* (but not a set) is a maximal code. Let 
77 :A* -> (R+, •), where (R+, •) denotes the multiplicative monoid of nonnega-
tive real numbers, be a morphism satisfying ir(A) (= Y,aeA7r(a)) = 1. Then X 
is a maximal code if and only if 

In one direction the proof is very easy, while in the other direction it is based 
on another characterization result of finite maximal codes which is as follows: 
A finite code X ç A* is maximal if and only if it is complete, which by 
definition means that, for each word x in A*, A*xA* O l * ^ 0 , or equiva-
lently, X* meets every two-sided ideal of A*. 

The above criterion does not hold for all codes, a counterexample being the 
prefix code X = {u e [a, b}+ | \u\a = \u\b and for each proper prefix v of u 
\v\a # \v\h}, which is maximal (and complete) but satisfies the condition 
IT(X) = 1 only for one morphism TT of the above form, namely for the 
morphism IT such that ir(a) = ir(b) = \. (Here \u\a, for example, denotes the 
number of occurrences of a letter a in u.) On the other hand, the assumption 
of X being finite can be weakened quite a lot. Indeed, the criterion holds true 
for all recognizable and also for all thin codes, which are defined as follows: A 
code X ç A* is thin if there exists a word x ^ A* such that A*xA* n l = 0 , 
or equivalently, A* — (A*)~lX(A*)~1 # 0 . Of course, each finite code is 
thin, and it is not too difficult to see that also each recognizable code is thin. 

This poses a question on the level of generality at which results should be 
presented in a book. The above is not the only example of a result which has 
been first discovered for finite codes, and later observed not only to be true but 
also provable with almost no extra effort for recognizable codes as well. This 
suggests that at least recognizable codes should be considered in the general 
presentation of the theory, and this point is strongly adopted in the book. On 
the other hand, moving from recognizable codes to more general codes often 
leads to complicated considerations and difficulties. However, thin codes are 
very suitable in the algebraic treatment of the theory. With this in mind the 
level of thin codes is the level of generality most often chosen in this book. 

Let us go back to maximal codes for a moment. It is an obvious consequence 
of Zorn's Lemma that each code is included in a maximal one. However, this 
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does not say anything about the problem of how to extend a given code to a 
maximal one. For example, can every finite code be extended to a finite 
maximal code? This question was answered negatively by Restivo [Res]; 
probably the simplest counterexample is the code {a5,ab,b,ba2}. Quite 
recently a method of completing a finite code X ç A*9 that is, extending it to a 
complete code, was introduced by Ehrenfeucht and Rozenberg [ER]. This 
method goes as follows. Let X ç A* be a noncomplete finite code. Then there 
exists, as is not difficult to see, a word w e A* such that 

(i) w is unbordered, i.e., wA + n A+w = w U wA*w, and 
(ii) A*wA* n l * = 0 . 

Now, define 

U = A* - X* - A*wA* 
and set 

Y = XUy(Uy)*. 
Then Y is recognizable, and it is not very difficult to conclude that y is a 
complete code. Consequently, X can be effectively completed to a recognizable 
complete code, and hence also to a recognizable maximal code. Here again it is 
worth noticing that it does not make any difference whether X is finite or 
recognizable. In any case, Y is recognizable and maximal. In this particular 
problem the proof goes without any changes for thin codes as well—only the 
result is not guaranteed to be recognizable, of course. 

As an evidence of the up-to-dateness of this book it can be mentioned that 
the above Ehrenfeucht-Rozenberg method appeared (in the generalized form 
described above) in this book earlier than in a scientific journal! 

Although we have been brief in our presentation, it should be clear by now 
that the combinatorics of words constitutes an essential part of the theory of 
codes. Indeed, all the results discussed so far are proved by such methods. We 
mention two more such examples. 

As a generalization of prefix codes we define codes having a finite decipher
ing delay d > 0. A set X ç A* (not necessarily a code) is said to have a finite 
deciphering delay d if it satisfies: 

VJC, X' e X, Vy e Xd
9 Vu<zA*: xyu e X'X* => x = x'. 

It follows immediately that X is a code. The importance of this notion comes 
from the fact that this property allows an easy decoding: If X is finite it is 
enough to have a finite look-ahead in order to decode (from left to right) a 
coded message. Now, an interesting result, again due to Schützenberger, says 
that any finite maximal code with a finite deciphering delay is a prefix code 
[Sc 2]. 

In the second example we return to biprefix codes. There exists a remarkable 
characterization of maximal finite biprefix codes due to studies initiated by 
Schützenberger and completed by Césari, cf. [Sc 3] and [C]. Let X ç A* be a 
maximal finite biprefix code. A parse of a word w e A* is a triple (v, x, u), 
where w = vxu with v ^ A* - A*X, x G X*, and u ^ A* — XA*. Then it can 
be verified that the number of different parses a word w may have is bounded 
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(independently of w), and the smallest upper bound is called the degree of X. 
Further the kernel of X is the set X n (A+y1X(A+y1, that is to say, the set 
of those words in X which occur also as internal factors in X. Thus we have 
associated each maximal finite biprefix code with two parameters, its degree 
and kernel. The surprising result is that these two parameters uniquely define 
X\ Moreover, a transformation, called an internal transformation, can be 
defined on the family of finite maximal biprefix codes over A having a given 
degree n in such a way that all biprefix codes in this family can be obtained 
from the uniform code An via these transformations. In addition, these 
families are finite, although their cardinality grows very rapidly when d grows: 
In a binary A there exist 5056783 such codes having degree 5! 

The above theory of finite biprefix codes is probably mathematically the 
most beautiful part within the theory of codes. In this book it is very clearly 
presented, and also partially reworked. Moreover, again the results are for
mulated (whenever possible) not only for finite codes but also for thin codes. 

All the results discussed above have been established by using, in one way or 
another, combinatorial methods and combinatorial properties of words. There 
exists, however, another approach which leads to important results of codes. 
This method is more algebraic, and its starting point is the notion of an 
unambiguous automaton. Clearly, if X ç A* is a code, then X* is unambigu
ous. Moreover, it can be recognized by a (not necessarily finite) automaton, 
most naturally using a so-called flower automaton s/g(X) which, by defini
tion, is as follows: For each word x in X, if x = ax • • • an, with at e A, then 

a\ a2 an 

there exists in s/£(X) a distinct path of the form q0 -> qx -> • • • qn_l -> q0, 
where q0 is the only initial and final state. Of course, this automaton is 
unambiguous. 

Associating a code X Q A* with a monoid, namely with the monoid of state 
transformations of s/g(X), algebraic methods can be employed in studying 
codes. In order to be a bit more concrete let us consider the case of very thin 
codes X Q A* which satisfy, by definition, the condition that there exists a 
word x e X* such that it is not a factor of X, or equivalent^, X* n (A* -
(A*)~1X(A*)~1) =£ 0 . It is an immediate consequence of the definitions that 
every very thin code is thin, while the reverse is not true in general. However, it 
can be shown that for complete codes these two notions coincide. Now, it turns 
out that very thin codes satisfy a finiteness condition which allows us to 
associate such a code with a group, namely with the Suschkewitch group of the 
monoid described above. These lines provide an explanation why thin codes 
are so central in this book. 

After finding the above connection between the theory of codes and classical 
algebraic theories, one is not surprised that the new theory can benefit from 
the older ones. This book contains many such examples. However, we state 
here only two results which are proved by using this approach. As we hinted 
earlier the implication "each thin complete code is maximal" can be proved by 
using probabilistic measures. It can also be proved, in a completely different 
way, using the algebraic approach. The second result we want to mention here 
yields a presentation for semaphore codes, that is, for codes X ç A* which are 
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of the form X = A*S - A*SA + with S c A*. It is not difficult to conclude 
that these codes are maximal prefix codes, and also thin. Further let us call a 
maximal prefix code X ç A* synchronous if there exists a word x e A + such 
that A*x c X*. Now, a deep result of Schutzenberger states that each sema
phore code X Q A* can be expressed in the form X = Zd

9 where Z is a 
synchronous semaphore code and d ^ 1. The algebraic approach yields an 
explanation of d: It equals the degree of the group of X. 

As a final matter we return to the question of characterizing all finite codes. 
We have already emphasized that this question is still very much open. As a 
step in this direction a notion of a factorizing code has been introduced. A 
code X ç A* is said to be factorizing if there exist subsets P and Q of A* such 
that each word wGv4* can be expressed uniquely in the form 

w = qxp with q e Q, p e P, and x e X*. 

This definition directly leads to formal power series over noncommuting 
variables. Indeed, associating each unambiguous set Y Q A* with the power 
series Y = E G y j>, we conclude that X Q A* is factorizing if and only if there 
exist subsets P and g of A* such that 

(1) 4* = QX*P. 

Taking inverses (remember that 7 * = 1/1 - 7), we can rewrite (1) as 

1-X=P(1-A)Q. 

It follows directly from (1) that if a finite code X ç A* is factorizing with P 
and g finite, then X is complete and hence maximal. Also, as a consequence 
of a theorem of Schutzenberger mentioned below, the converse holds in the 
following sense: If a maximal finite code is factorizing, then P and Q are 
finite. However, it is an open question—and this is probably the most 
important open question within the whole theory of codes—whether each 
maximal finite code is factorizing. An example of Shor [Sho] shows that not all 
finite codes are factorizing. 

There exist two important results in the direction of an affirmative answer of 
the above question. The first is again due to Schutzenberger [Sc 4], and is as 
follows. For a formal power series Y over noncommuting variables let us 
denote by Y the corresponding power series over commuting variables. The 
theorem says that if X ç A* is a finite maximal code, then I - A divides 
1 — X. The proof is long, but can be found in the book. The second result, due 
to Reutenauer, cf. [Reu] or [BR], is even more closely related to the above 
factorizing question, but is unfortunately not included in the book. The result 
says that for each maximal finite code X Q A* there exist polynomials P and 
Q with integer coefficients such that 1 — X = P(l — A)Q. 

Besides being interesting in its own right the above question has important 
connections. Indeed, as is relatively easy to see, each factorizing code is 
commutatively equivalent to a prefix code—a property which is certainly inter-
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esting from the point of view of information theory. Hence, if every finite 
maximal code were factorizing it would also be commutatively equivalent to a 
prefix code. Again the example of Shor shows that a finite code need not be 
commutatively equivalent to a prefix. 

So far we have talked about several problems which, according to our 
estimate, are among the most interesting in the theory of codes, and which are 
broadly discussed in this book. By no means have we tried to be exhaustive, 
nor have we gone into proofs of theorems. On the other hand, we have tried to 
give a flavor of the ideas and techniques used in the book. In particular, it 
should be noted that the theory has connections to many different parts of 
mathematics. 

The amount of material covered by this book is very large. There is no way 
to include all of it in a one-year university course. The book is unique in the 
sense that a large portion of its contents cannot be found in any other existing 
book. However, it is not a collection of distinct important results: the authors 
have really reworked many theorems in order to create a uniform theory. The 
presentation is self-contained, although basic knowledge on automata theory 
makes the reading easier. The book contains detailed bibliographical notes as 
well as many exercises on different levels. 

In my opinion this book is an excellent example of the phenomenon that a 
simple mathematical notion—an injective morphism of free semigroups—may 
lead to an interesting theory with challenging problems. Anybody interested in 
such things should be interested in Theory of codes. 
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