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While as old as the hills, the Fundamental Theorem of Arithmetic also 
embodies two aspects of modern mathematics. The Fundamental Theorem 
states that every composite number is uniquely decomposable into primes. 
With such a theoretically satisfying description of the multiplicative structure 
of the integers as our template, we have sought out and often found analogous 
structure in almost every corner of mathematics. Endowing seemingly chaotic 
material with structure and discovering new truths as a result is unquestionably 
a major function of mathematics. But the Fundamental Theorem also repre
sents another trend in mathematics, a trend that was out of favor in the middle 
decades of this century. Computation, algorithms, and issues of effectivity, 
mainstays of the last century, have enjoyed reawakened interest in this, the age 
of computers. The Fundamental Theorem of Arithmetic, in the active form of 
actually distinguishing between primes and composites and factoring the latter 
into primes, has played a fundamental and benchmark role in this reawaken
ing. 

It is perhaps not so widely known, but the two problems just mentioned, 
distinguishing primes from composites and factoring composites, are quite 
different. This seems paradoxical since if a factoring algorithm is applied to a 
prime input p, the failure of the algorithm to properly factor p should then 
give us the information that p is after all prime. In fact, the best known 
factoring algorithm of all, trial division, when exhaustively applied to every 
trial divisor up to Jp, is also the best known primality test. 

To see clearly the difference between the two problems, one need look no 
farther than Fermat's "little theorem": if p is prime, then ap = a mod/?. 
Since it is a simple procedure to compute the residue an mod« when given a 
and n (this can be done in 0(log«) arithmetic steps in the ring Z/« by the 
repeated squaring method), if the residue is not a moàn, then n has been 
revealed as composite. Yet we are no closer to factoring n. 

Thus the computational side of the Fundamental Theorem of Arithmetic 
falls into two separate problems. The first, generally called primality testing, 
involves deciding if an input integer is prime or composite. Some algorithms 
under this general banner will prove all or most composite inputs are com
posite, but not say anything about prime inputs (using Fermat's little theorem 
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as described above is such a "compositeness" test). Other algorithms find 
proofs of primality for prime inputs (true primality tests) while others might do 
both. The other computational problem associated with the Fundamental 
Theorem is, of course, factoring composite integers. 

How can a compositeness test prove all composite inputs are composite but 
not say anything about prime inputs? Such a feat is possible through the use of 
randomness. For example, it has been known since Euler that if p is an odd 
prime and a is not divisible by /?, then a(p~l)/1 = (a/p) mod/? where (a/p), 
the Legendre symbol, is 1 or -1 depending on whether a is congruent to a 
square mod/? or not. The symbol (a/p) is computable by viewing it as a 
Jacobi symbol (which does not require the "denominator" to be prime) and 
using the law of quadratic reciprocity for Jacobi symbols with a procedure 
similar to Euclid's well-known algorithm for computing greatest common 
divisors. In fact, both sides of the Euler congruence can be computed for a pair 
a, n where a is not divisible by n and n is odd. Thus an odd n can be proved 
composite (as with Fermat's little theorem) by exhibiting some a with a # 0 
mod« and a^

n~l)/2 # (a/n) mod«. It can be shown (Lehmer [6], Solovay-
Strassen [16]) that if n is odd and composite, then at least half of the integers a 
in the interval [l,n] would work via Euler's congruence to prove n composite. 
Thus in [16], the following random compositeness test is described. On input of 
an odd integer n, choose random integers a in [1, n] and check the Euler 
congruence for the pair a, n. If n is composite, we expect to prove n composite 
after only finitely many trials. But if the input n is prime, the test proves 
nothing (unless one actually performs the test for more than n/2 different 
values of a). 

This algorithm and a similar one by Rabin [13] show that compositeness 
testing is in the complexity class R (random polynomial time). While the idea 
of randomness was known before as a useful tool in algorithms, this test 
seemed to grab people's imaginations and really opened the door for a flood of 
random algorithms in many areas. 

True primality testing (proving prime inputs are prime) is harder, but here 
too there have been some important advances in recent years. The algorithm in 
[1] gets more information out of the Euler congruence than either pass or fail 
and finds a way to glue this information together with similar tests that involve 
the higher power reciprocity laws. This test is deterministic and in time 
O((logw)clogloglog") will determine if the input n is prime or composite. It 
stands as the fastest known deterministic primaHty test (and compositeness 
test). A random version of this test [2] is computer practical and has been used 
to routinely prove numbers prime with more than 200 decimal digits. 

The most recent developments in primality testing involve the theory of 
elliptic curves over finite fields. Using Hasse's theorem, which gives an interval 
in which the order of an elliptic curve group over a finite field must fall, and 
an algorithm of Schoof [15] for actually computing this order exactly, Gold-
wasser and Kilian [3] found a random true primaHty test that is expected to 
prove most prime numbers prime in polynomial time. The possible exceptional 
set is probably empty—it could be proved empty if we had stronger tools from 
analytic number theory on the distribution of primes in short intervals. Very 
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recently, Adleman and Huang announced a complicated way of getting around 
this exceptional set by using arithmetic on higher-dimensional abelian varieties. 
If their algorithm holds up it will show true primality testing is also in the 
complexity class R. Although the above tests are not computer practical, Atkin 
has recently found an elliptic curve primality test that is and that even beats 
the times found in [2]. 

Although it still remains to be seen if there is a deterministic polynomial 
time primality test, the subject of primality testing is in a far more satisfactory 
state than that of factoring, which is, relatively speaking, still in the dark ages. 
This disparity between the relative ease of primality testing and difficulty of 
factoring has been made the basis of the "one-way function" in the RSA 
public key cryptosystem. 

The fastest rigorous deterministic factoring algorithm that we know appears 
in two similar forms [9, 17] and will produce a nontrivial factorization 
of a composite number n in time about w1/4. The fastest rigorous random 
factoring algorithm [12] takes expected time about L(n)^ where L(n) = 
exp^log n log log n ). (This method is based on ideas of Dixon, Lenstra, and 
Wiedemann.) 

Since the output of a factoring algorithm can easily be checked, it may also 
profitably employ heuristics. In fact, all practical factoring algorithms beyond 
the most basic ones (such as trial division) use heuristic methods. The two most 
practical algorithms for factoring both have a heuristic worst-case running time 
of about L(n). These are the quadratic sieve [10, 11] and the elliptic curve 
method [8]. The quadratic sieve, however, works better than the elliptic curve 
method when n is the product of two roughly equal primes (the numbers of 
cryptographic interest) while the elliptic curve method works better on all other 
composite numbers. The quadratic sieve has factored numbers in the 80s of 
decimal digits while the elliptic curve method has factored numbers whose least 
prime has about 30 decimal digits. However, these calculations are far from 
routine, requiring some heavy-duty computing. 

Because of the fundamental role played by the prime numbers, it is natural 
to consider their distribution among the integers. Probably the most important 
single theorem in number theory, the Prime Number Theorem gives an 
approximate formula for TT(X), the number of primes up to x. It states that 
TT(X) = (1 4- ö(l))x/logjc. The efforts to prove this elegant equation during 
the last century played a large role in the development of complex analysis. 

As with the Fundamental Theorem of Arithmetic, the Prime Number 
Theorem also has its computational side. In one direction one can try to prove 
inequalities for TT(X) valid in explicit ranges. A very satisfying result of this 
type [14] is that ir(x) > jc/logjc for x ^ 17. The computations that go into a 
result such as this involve the so-called explicit formula which relates TT{X) to 
the zeros of Riemann's zeta function. 

Another kind of computational problem is to compute ir(x) exactly for a 
particular x. The sieve of Eratosthenes can be used in this regard in time 
O(jcloglogx) and space O(x). Various clever combinatorial counting argu
ments have been applied over the years to lower the time and space complex
ity. A recent algorithm of Lagarias and Odlyzko [4] uses analytic methods and 
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computes TT(X) in time 0 ( J C 3 / 5 + £ ) and space 0(xe\ but is not computer 
practical. Another method by these two and Miller [5] is somewhat slower 
asymptotically but has been used for the phenomenal calculation 77(4 • 1016) = 
1,075,292,778,753,150. 

As the first major book on these fascinating subjects in a long time, the book 
under review is quite welcome. The author is a practical and long time artisan 
of the myriad techniques involved with large scale integer problems on a 
computer. The book contains the wealth of a lifetime of experience and is 
brimming with tricks of the trade for those who themselves want to begin 
crunching their own big numbers. 

In mild criticism, the book is uneven in places, going into obscure detail on 
points that are not too interesting, while skimming over other points that cry 
out for development. In any event, there are many references provided, so the 
reader with piqued curiosity will not be left high and dry. Riesel has been a bit 
skimpy on the theoretical development of the subject. The few complexity 
analyses of algorithms that are presented are not satisfying and seem to have 
been added as an afterthought. It seems odd that many of the intriguing 
unsolved problems connected with the subject, such as, are there infinitely 
many Carmichael numbers? are not even mentioned. 

The level of Riesers book makes it quite accessible to non-experts. It is an 
excellent choice for someone who actually wants to do elementary number 
theory on a computer. There are very few books like this around where the 
author's unabashed love of computation comes shining through so clearly. 

With any book written on a fast-changing subject, there are going to be 
late-breaking developments that are missing. Here, the book appeared just as 
Lenstra and others were demonstrating the wonderful connection to the theory 
of elliptic curves over finite fields. An up-to-date survey [7] of mostly the 
theoretical side of factorization and primality algorithms will appear soon. 
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The monotone method and its associated upper-lower solutions for nonlin
ear partial differential equations have been given extensive attention in recent 
years. The method is popular because not only does it give constructive proof 
for existence theorems but it also leads to various comparison results which are 
effective tools for the study of qualitative properties of solutions. The mono
tone behavior of the sequence of iterations is also useful in the treatment of 
numerical solutions of various boundary value and initial boundary value 
problems. Recognizing its immense value to nonlinear problems, the authors 
repeatedly apply the monotone method and the idea of upper-lower solutions 
to various first- and second-order partial differential equations. To illustrate 
the basic idea of the monotone method, let us consider a typical elliptic 
boundary value problem in the form 

-L[u] = ƒ(*, u) in Q, B[u] = h(x) on 30, 

where L is a uniformly elliptic operator in a bounded domain B and B is a 
linear boundary operator on dû. Suppose there exists an ordered pair of upper 
and lower solutions v and w, that is, u and w are smooth functions with v > w 
such that 

-L[v] >f(x,u)mQ9 B[u]>h(x) cmdQ, 


