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of upper-lower solutions and monotone iterations. Periodic and terminal 
boundary conditions are included in the discussion. Chapter 3 is concerned 
with elliptic equations, and Chapter 4 with parabolic equations. A major part 
of these two chapters is devoted to the existence problem for systems where the 
nonlinear reaction function depends on u as well as on Vw. These two chapters 
cover the main theme of the book and they deserve special attention. The final 
chapter treats the hyperbolic equation of first order. Here the method of 
upper-lower solutions is shown to be useful for the construction of a Lyapunov 
function. The book is self-contained, with an appendix giving most of the 
necessary material from the theory of linear partial differential equations. The 
bibliography is extensive, and it leads the reader to various references for more 
detailed discussions on related subjects. 

Although there are some minor points which need more explanation or 
clarification, the book is well written and is a much needed and timely addition 
to the current literature, especially in the area of nonlinear reaction-diffusion 
systems. Despite the distinct characteristics among second-order elliptic, 
parabolic and hyperboHc equations, the authors have successfully established a 
unified approach and cast these problems into the same framework of mono
tone technique. This book may well stimulate further research in other areas of 
differential and integral equations and related fields. In fact, the monotone 
method and its associated upper and lower solutions have already been used 
for the treatment of numerical solutions of nonlinear parabolic and elliptic 
equations. It is likely that both the analytical techniques and the numerical 
schemes will receive even greater attention in various applied sciences. 
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The development of ^-theory has been one of the great unifying forces in 
mathematics during the past thirty years, bringing together ideas from geome
try, algebra, and operator theory in fruitful and often unexpected ways, and 
stimulating each of these subjects through the importation of insights and 
techniques from other areas. 

It is commonly agreed that ^-theory originated with the work of 
Grothendieck in the late 1950s in which he proved a generalized Riemann-Roch 
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theorem. This involved the construction of a group from the category of 
coherent algebraic sheaves over a projective algebraic variety. Grothendieck's 
idea was taken up by Atiyah and Hirzebruch, who showed how to associate 
with any compact space X a group K(X) constructed from the category of 
vector bundles over X. This soon became a vital tool in such areas as stable 
homotopy theory and index theory for elliptic operators. The space X is 
determined by the ring of continuous functions C(X\ and in this context the 
elements of K( X) can be described in terms of the finitely-generated projective 
modules over C( X). This result is due to Swan, although Serre had previously 
proved the analogous result for coherent sheaves over algebraic varieties. Thus 
for any unital ring R one can define K(R) as the enveloping group of the 
semigroup of isomorphism classes of finitely-generated projective modules over 
R. Such a module is a direct summand of a free module, and by considering 
the projection from the free module to the projective module one arrives at the 
operator algebraist's viewpoint: for a unital C*-algebra A, K(A) is the 
enveloping group of the semigroup of equivalence classes of projections in 
matrix algebras over A. The semigroup operation is given by direct sums and 
the equivalence relation can be taken to be stable unitary equivalence ("stable" 
here means that one identifies a matrix algebra with its embedding in a larger 
matrix algebra). 

The first explicit appearance of ^-theory, in this form, in operator algebras 
did not occur until about ten years ago, following work of Elliott in which he 
used it to give a complete isomorphism invariant for AF algebras (inductive 
limits of finite-dimensional C*-algebras). Elliott's result had earlier been 
proved for special classes of AF algebras by Glimm and Dixmier. But operator 
algebraists will recognize the basic elements in the construction of K(A) as 
going back much further than that. The very first paper on rings of operators 
by Murray and von Neumann (1936) introduces the comparison theory of 
projections as the basis for classifying von Neumann algebras; and the 
technique of using matrix algebras over a given operator algebra goes back 
even further, to von Neumann's proof of the double commutant theorem 
(1929). With hindsight, it can seem quite surprising that von Neumann did not 
develop operator-algebraic Â-theory fifty years ago. 

Since K(A) is constructed from a semigroup, it is not only a group but also 
carries an ordering, and one can ask which ordered groups arise in this way. In 
the case of AF algebras there is a very satisfactory answer to this question, due 
to Effros, Handelman, and Shen. They proved that an ordered group is a 
dimension group (that is, K(A) for some AF algebra A) if and only if it is 
unperforated and satisfies the Riesz interpolation property. Using this, Bratteli, 
Elliott, and Herman were able to show that, given any closed subset K of 
iR U { ± oo}, there is a quantum dynamical system for which the set of inverse 
temperatures at which there exist equilibrium states is exactly K. 

For a C*-algebra A, define the suspension of A to be the C*-algebra 
SA = A 8 C0(R). We write K0(A) = K(A), K^A) = K(SA) (having first 
extended the definition of K(A) to cover the nonunital case). If 

0 -• J -> A -> A/J -• 0 
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is an exact sequence of C*-algebras, then there is a six-term exact sequence 

K0(J) > K0(A) > K0(A/J) 

î i 
K1(A/J)< KX(A) < KX(J), 

in which the horizontal maps are defined functorially and the vertical connect
ing maps are very concretely specified (the index map and the exponential 
map). This is the C*-algebraic formulation of Bott periodicity, and is the first 
deep result in the theory, providing a powerful tool for the computation of 
A^-groups. 

The next major developments require the notion of a crossed product for 
C*-algebras. Suppose that G is a (locally compact, abelian) topological group 
which acts as a group of automorphisms of a C*-algebra A in a suitably 
continuous way. Then the crossed product A X G is a "larger" C*-algebra in 
which these automorphisms "become inner". (This statement is correct if G is 
discrete; in the continuous case the phrases in quotes need to be interpreted a 
bit elastically.) For a very concrete example, let A be the commutative 
C*-algebra C(T) of continuous complex-valued functions on the circle, which 
acts (by pointwise multiplication) as an algebra of operators on the Hubert 
space L2(T9 Haar measure). For a fixed irrational 6 in (0,1), let u be the 
unitary operator on L2(T) given by "rotation through 0 ": 

ux(z) = x(ze-2wiê) (x e L2(T),ze C, \z\= l ) . 

Then u induces an automorphism of A, and the group Z acts on A by powers 
of this automorphism. Define Ae = A X Z. It can be shown that Ad is a 
simple C*-algebra, and that it is isomorphic to the C*-algebra of operators on 
L2(T) generated by A and u. These "irrational rotation algebras" have been 
important in the development of the theory. Innocent little questions about 
them (Do they contain nontrivial projections? Are they isomorphic to each 
other, for different values of 01) can be hard to answer, and have provoked 
major advances in C*-algebraic ^-theory. 

There are two big theorems which provide information about X-theory for 
crossed products. The first, due to Pimsner and Voiculescu, deals with crossed 
products by Z. Suppose that a is an automorphism of a C*-algebra A, 
generating an action of Z on A. There is a six-term exact sequence 

K0(A) ^ - K0(A) —— K0(A X Z) 

î i 

KX{A X Z) *— KX(A) « - ^ KX(A)9 

where i: A -» A X Z is the natural inclusion. This sequence does not com
pletely determine the üf-theory of A X Z in all cases, but it does provide a 
great deal of information. For example, it enables one to give good answers to 
the two questions in the previous paragraph about irrational rotation algebras. 
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The second big theorem is Connes' Thorn Isomorphism Theorem, which says 
that for crossed products by R, 

^ • ( ^ R ) ^ H W 0 = O,I). 
This obviously provides complete information about the #-theory of A XI R, 
and in fact says that it is independent of the way IR acts on A. In the special 
case when the action is trivial, the crossed product is just SA and we retrieve 
the Bott Periodicity Theorem. 

We now turn to another main theme of operator algebraic ^-theory, the 
study of extensions. In its most general setting, this seeks to classify short exact 
sequences 

0-*B->E->A^>0, 
where A and B are given C*-algebras. In order to classify, one needs to know 
when to identify two extensions, and unfortunately there are many different 
choices for an equivalence relation on the set of extensions, all of them 
described in terms of the so-called Busby invariant, which we shall now define. 

For a C*-algebra 2?, there is a maximal C*-algebra M(B), the multiplier 
algebra of B, which contains B as an essential ideal. The quotient algebra 
Q(B) = M(B)/B is called the outer multiplier algebra of B. Given an 
extension as in the previous paragraph, there is an evident homomorphism 
from E into M(B). This, composed with the quotient maps, gives the Busby 
invariant r: A -> Q(B). Conversely, given T, one can reconstruct the extension 
from the diagram 

E > A 
I J, T 

0 • B • M(B) "—* Q(B) • 0 

by taking E to be the pullback 

E = {(m, a):m <E M(B),a GA9ir(m) = r(a)}. 

The simplest case to study is that in which B is the algebra K of compact 
operators on a separable Hubert space H. Then M{B) can be identified with 
B(H) and Q(B) with the Calkin algebra C In this setting, suppose that we 
have two extensions, with associated Busby invariants T1? T2: A -> C. Then we 
can form the direct sum TX © T2: A -> C © C. But since H © H = H, we can 
embed C © C in C, so that rx © T2 becomes a map from A to C and is 
therefore the Busby invariant of an extension. In this way the set of extensions 
of A by K (or of A' by A if you prefer: the terminology is not standardized) 
becomes a commutative semigroup. 

In the 1970s Brown, Douglas, and Fillmore made an intensive study of this 
semigroup for the case A = C(X), X a compact metric space. They showed 
that it is in fact a group Ext(X), with many pleasant properties such as 
homotopy invariance and Bott periodicity. One of the most important features 
of this BDF theory is its connection with ^-theory. The topological A'-theory 
for a manifold is a generalized cohomology theory. Topologists had sought for 
a long time to find a concrete realization for the associated ^-homology, and it 
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was known to Atiyah and others that this would involve the index of certain 
Fredholm operators. Brown, Douglas, and Fillmore succeeded in identifying 
Ext( X) with the A'-homology group Kx( X). 

In seeking to extend this theory to more general classes of extensions, we 
look next at the case where the quotient algebra A is any C *-algebra, the ideal 
still being K. The situation here is not so good, since in general Ext(^4) is not a 
group (it can contain elements with no inverse). If A is separable and nuclear, 
however, then Ext(^l) is a group. So let us press ahead and consider the set 
Ext(^4, B) of extensions of A by B, for arbitrary C*-algebras A and B. The 
first problem here is that we cannot even define a semigroup operation on 
Ext(A, B) unless B shares some of the "absorbent" properties of K which 
enabled us to handle direct sums of Busby invariants. This is not a serious 
difficulty. All that is needed is that B should be stable, that is, B = B <8> K. If 
B is not stable then we can stabilize it by replacing it with B ® K, which is 
always stable. It then turns out that Ext(^4, B <8> K) is a group for any B, 
provided that A is separable and nuclear. If we assume in addition that B 
satisfies a mild separability condition then Ext(A,B®K) is homotopy-
invariant for both variables A, B and satisfies Bott periodicity. 

We now find ourselves looking at bifunctors from pairs of C*-algebras to 
abelian groups, and the scene is set for KK-theory. This was introduced by 
Kasparov, and gives a unified framework for all the material discussed above, 
as well as introducing some very powerful new machinery. What Kasparov did 
was to associate with each pair of C*-algebras A, B an abelian group 
KK(A, B) with many good properties (these usually require some kind of 
separability hypotheses, which we omit in what follows). For a start, KK(C, B) 
= K0(B\ so that .OT-theory subsumes ^-theory. The groups KK(SA,B) 
and KK(A, SB) are isomorphic, and are usually written as KK\A9 B). 
Then KK\A, B) can be identified with the group of invertible elements of 
Ext(^4, B ® K\ and in particular is isomorphic to Ext(^4, B) if A is nuclear 
and B is stable. The .Of-groups are homotopy invariant and satisfy Bott 
periodicity in both variables. At a technical level, the usefulness of the 
XX-groups centers round the existence of the Kasparov product. This product 
is a map 

KK{Ay D) X KK(D, B) - KK(A, B) 

which exists for any C*-algebras A,D,B and which is associative. Both the 
construction of the product and the proof of associativity are technically 
difficult and can also seem conceptually obscure, especially in Kasparov's 
original formulation. There is an alternative formulation, due to Cuntz, in 
which elements of KK(A, B) are viewed as generalized homomorphisms from 
A to B. The Kasparov product then appears as an analogue of the composition 
of homomorphisms. This approach can seem more accessible than Kasparov's; 
but it is less well adapted to some of the more important applications in 
analysis. In Kasparov's approach, KK(A, B) is defined in terms of graded 
operators on a Z 2-graded Hubert 5-module which commute modulo compact 
operators with an action of A on the module. (As in the case of extensions, 
there are several different possible choices for an equivalence relation on these 
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objects, most of which eventually turn out to be the same.) This machinery can 
seem intimidating at first, but in fact such objects often arise in analysis. For 
example, certain types of maps between smooth manifolds give rise to a "Dirac 
operator", an elliptic pseudodifferential operator which fits very naturally into 
this framework. 

To see how the Kasparov product can be a useful device, consider what 
happens when A = C. Then a given element of the Kasparov group KK(D, B) 
provides, via the Kasparov product, a homomorphism from K0(D) to K0(B). 
This provides a useful and natural way for constructing homomorphisms 
between AT-groups. The Kasparov product also exhibits a duality between 
K0(B) = KK(C, B) and KK(B, C), thus extending the BDF theory in describ
ing ^-homology. Notice also that the Kasparov product makes KK(A, A) into 
a ring. This ring structure is not very useful, however. Indeed, there is a 
Universal Coefficient Theorem which says among other things that, at least for 
a wide class of C*-algebras, the ring KK(A, A) can be reconstructed from the 
groups K0(A) and KX(A). 

All the above material and much more is contained in the book under 
review. Blackadar's style is extremely concise. This enables him to pack an 
enormous amount of mathematics into just over 300 pages, but it means that 
many details are left for the reader to supply. This approach has its ad
vantages. By exhibiting the bare bones of an argument, the author is able to 
clarify its essential structure in a way which a more detailed exposition might 
not achieve. It is important in such an approach that there should be no 
cheating: the details which are suppressed must be more or less routine, and 
the steps which are highlighted must be the key ones. Blackadar cannot be 
faulted on this test. For example, the proof of Bott periodicity occupies just 
two and a half pages, and within that space the essence of a long argument is 
conveyed with admirable clarity. As the book progresses, however, the tend
ency towards brevity intensifies. By Chapter 20 (Equivariant KK-theory) the 
author is forced to admit that "we must content ourselves with a survey". 

Despite the terseness of the proofs, this is not a difficult book to read. The 
author takes great care to orient the reader and motivate the material at each 
stage, and there are very many illuminating comments, examples and exercises. 
A noteworthy feature is the careful presentation of apparently trivial examples 
where these provide useful insights. (See for example the discussion of KK(C, C) 
in Example 17.3.4.) 

What is operator algebraic ^-theory good for, and where does it go from 
here? Blackadar answers the first of these questions in a final chapter (Survey 
of applications to geometry and topology) which discusses a variety of existing 
and potential uses for ^-theory and KK-thcory. These include index theorems, 
the Novikov Conjecture on higher signatures, Rosenberg's work on manifolds 
with positive scalar curvature and the Baum-Connes Conjecture. As for the 
second question, suppose that we ask that the commutators which occur in 
Kasparov's definition for the elements of KK(A,C) should not just be 
compact but should He in one of the Schatten /^-classes. One can then exploit 
the fact that certain operators are of trace class ("one" here means not just 
anyone but, to be precise, Connes) and one can show that the trace behaves 
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like a noncommutative version of the Chern character. This opens up a whole 
new subject of "noncommutative differential geometry". Furthermore, the 
algebraic formalism of the behavior of the trace leads one to the theory of 
cyclic cohomology. "But that is the subject for another book [Cn 3]", as 
Blackadar says at the end of his final chapter. (If you can't guess what the 
"[Cn 3]" refers to then you will have to look it up in Blackadar's bibliography.) 

Final verdict: this is an excellent book, combining formidable scholarship, 
impeccable accuracy, and lucid if succinct exposition. It sets a very high 
standard for Springer's commendable new series of MSRI Publications. 
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A standard introductory textbook on ordinary or partial differential equa
tions presents the student with a maze of seemingly unrelated techniques to 
construct solutions. Usually these unmotivated and boring techniques con
stitute the total experience with differential equations for an undergraduate. 
Faced with a given differential equation which is not a textbook model, one is 
hopelessly lost without "hints"! 

In the latter part of the 19th century Sophus Lie introduced the notion of 
continuous groups, now known as Lie groups, in order to unify and extend 
these bewildering special methods, especially for ordinary differential equa
tions. Lie was inspired by lectures of Sylow given at Christiania, present-day 
Oslo, on Galois theory and Abel's related works. [In 1881 Sylow and Lie 
collaborated in editing the complete works of Abel.] He aimed to use symmetry 
to connect the various solution methods for ordinary differential equations in 
the spirit of the classification theory of Galois and Abel for polynomial 
equations. Lie showed that the order of an ordinary differential equation can 
be reduced by one if it is invariant under a one-parameter Lie group of point 
transformations. His procedures were both constructive and aesthetic. 

For ordinary differential equations Lie's work systematically and compre
hensibly related a miscellany of topics including: integrating factors, separable 
equations, homogeneous equations, reduction of order, the method of unde
termined coefficients, the method of variation of parameters, Euler equations, 
and homogeneous equations with constant coefficients. Lie also indicated that 


