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The Taniyama-Weil conjecture predicts a similar relation for elliptic curves

over Q, namely L(s, E) = L(s, f), for a felicitous choice of /. Even in this

form the conjecture is of great appeal, for it permits the function L(s, E) to be

analytically continued. There is a similar conjecture for the Artin L-functions

associated to tetrahedral, octahedral, and icosahedral representations. It is also

very important, and in part established, but it does not have such concrete

arithmetical consequences as that of Taniyama-Weil, nor is it part of a theory
with such an ancient tradition. It can also be tested numerically [B], but not

yet so readily [C]. Moreover the theory of Eichler-Shimura and of the Hecke

operators acting on the curves X, and on their integrals, to which the last third

of the book is devoted provides a rich, and relatively concrete, conceptual and

computational context in which the Taniyama-Weil conjecture can be better

formulated and more easily understood and appreciated by a broad spectrum

of mathematicians.

Knapp's Elliptic curves is not the book from which to learn everything about

elliptic curves. The deeper parts of the arithmetic theory, involving complex
multiplication and cohomology, are absent; so is the more elaborate analytic

part, involving theta functions or Jacobi elliptic functions. There is, nonetheless,

a great deal of material that is presented carefully and is fun to read, and most
of the basic techniques and open problems are there. Occasionally a word or

two of further explanation would have made it easier for the reader to find

his way through an argument, but such omissions are rare, and the author has

promised to rectify them. The book can be recommended to students and to
experienced mathematicians. There are few of us, even in closely related fields,
who will not learn something from it.
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An extension of Casson 's invariant, by Kevin Walker.   Princeton University
Press, Princeton, NJ, 1992, v+131 pp., $16.50. ISBN 0-691-02532-0

An integral (resp. rational) homology 3-sphere is a closed 3-manifold whose
first integral (resp. rational) homology group vanishes. (We henceforth abbre-
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viate these terms as ZHS and QHS respectively.) These represent an im-

portant and slippery class of 3-manifolds—including, for example, those 3-

manifolds for which Thurston's tantalizing Geometrization Conjecture has yet
defied proof. Furthermore, such 3-manifolds are as plentiful as knots: Given

any knot K c S3, the various Dehn fillings obtained by attaching solid tori to
the complement S3 - K are all homology spheres. Before 1985 the principal

invariant of a ZHS X3 was the Z/2-valued Rohlin invariant ß(L3), derived
from the signature of a bounding 4-manifold. At that time it seemed plausible

that the Rohlin invariant could detect a possible counterexample to the Poincaré

conjecture.

In 1985 Andrew Casson found a powerful Z-valued invariant X(L3) of a

ZHS X3, which laid these hopes to rest. From its existence and basic proper-

ties follow some remarkable results in geometric topology, such as: there exist

topological 4-manifolds which are not homeomorphic to Simplicia! complexes. A

closely related result concerns the Poincaré conjecture: Casson's invariant is

defined in terms of the fundamental group and reduces modulo two to Rohlin's

invariant. In particular, Rohlin's invariant cannot detect a counterexample to
the Poincaré conjecture.

For an exposition of Casson's original results, presented in three lectures at

MSRI in spring 1985, we recommend the notes [1] of Akbulut and McCarthy.
Other generalizations and extensions are noted in the bibliography.

Shortly thereafter, Cliff Taubes found a highly suggestive analytic interpre-

tation [12] of Casson's X(L3). Let X3 be an oriented ZHS, and consider the
space si of all connections on a fixed (trivial) SU(2)-bundle P over X3. The

group 2/ of gauge transformations of P is isomorphic to the group of all maps

from X3 into SO(3). Then the tangent space to si at A is the space ß-^X3, g)

of 1-forms on X3 taking values in the bundle of Lie algebras associated to P.

The curvature F (A) of A is an exterior 2-form with values in g, an element

of ß2(X2, a). Using the invariant inner product on the Lie algebra of SU(2)

and a volume form on X3, the spaces TA(si) = ß'(X3, g) and ß2(X3, g) are

canonically dual. Thus the operation assigning to a connection A G si its cur-

vature F (A) G ß2(X3, n) is a 1-form $on i. Furthermore, 2? acts on si

preserving <S>. The zeros of <I> evidently correspond to flat connections. Í?-

orbits of flat connections correspond to equivalence classes of representations

of the fundamental group into SU(2). Taubes defines a Poincaré-Hopf index

of the 1-form <I> on si and shows that the resulting Euler characteristic equals
Casson's invariant.

This invariant depends on the Fredholm structure of the moduli space of

flat SU(2)-connections on X3. The "instanton homology" (see [6]) invented by

Floer is a homology theory associated to X3 whose Euler characteristic equals

A(X3). However, the Floer homology has been rather difficult to compute except

in the simplest examples, while X(L3) can be computed simply in terms of a

surgery formula discovered by Casson. This remarkable formula is the key to

calculating Casson's invariant. If K c M is a knot in a ZHS, and Ki/„

denotes 1/«-Dehn surgery on M along K (so that Kyn remains a ZHS and

Ki/o = M ; see below), then

X(Ki/n) = X{M) + nAK{l)

where A'K denotes the second derivative of the Alexander polynomial Ak of
K in M.
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Given the power of this invariant, it was natural to try to extend it in various
directions. The book under review describes an extension of A(X3) to the case

when X3 is a QHS. If K c S3 is a knot, then its "complement" is a compact
3-manifold N3 with boundary a 2-torus (whose interior is homeomorphic to

S3 - K). One obtains a rational homology sphere Np¡q by attaching to M3

a solid torus T » Sx x D2 by gluing the meridian {s} x 3D2 of F to a

{p, q)-curve on dN3. A {p, q)-curve on dN3 is defined as any curve in the

homology class corresponding to {p, q) G Z ® Z = Hi{dN) which is the linear

combination: p times a generator (1,0) of the image of

Z^Hi{N)^Hi{dN)

plus q times an element (0, 1) projecting to a generator under

HiidN) -» Hi{dN)/Hi{N) 3 Z.

In particular, Nl/g is a Z/LS for each q eZ while every TYp/, is a Q/LS.
Casson's original definition and Walker's generalization each involve the

moduli space Hom(7ii(X3), SU(2))/SU(2) of equivalence classes of repre-
sentations of the fundamental group 7Ti(X) into SU(2). The representations

themselves form a real algebraic set upon which the inner automorphisms of

SU(2) act algebraically. Accordingly, the moduli space is a real analytic space

and stratifies into analytic submanifolds. Roughly, Casson's invariant counts—

algebraically—the points in Hom(7ii(X3), SU(2))/SU(2) where X3 is a closed
oriented ZHS.

The actual counting is a bit more involved. Following Casson, one decom-

poses the 3-manifold X3 as a union of two solid handlebodies Wx \JF W2 of

genus g > 1 along a closed surface F and computes the space

Hom(7Ti(X3), SU(2))/SU(2) in terms of this Heegaard decomposition. The
space of interest Hom^^X3), SU(2))/ SU(2) is embedded in the larger space

X = Hom{ni{F), SU(2))/SU(2)

corresponding to the surface F c X3 under the natural restriction map, but
there is considerably more space (and geometry) in X to study

Hom(7Zi(X3), SU(2))/SU(2). Then the space of equivalence class of repre-
sentations

Hom^^X3), SU(2))/SU(2) c X

(alternately, the space of gauge-equivalence classes of flat connections) is the
intersection of the images Q¡ of

Hom(7r,(^), SU(2))/SU(2) «- X.

The orientation of X3 induces orientations of Wx , W2, F c X3, which in turn
induce orientations on the various spaces Qi , Q2 c X, and Casson's invariant
A(X3) is a kind of oriented intersection number Qi • Q2 .

To develop intuition for the nature of this invariant, consider the follow-

ing simple analogue. Replace SU(2) by the circle group U(l). If X3 is a

ZHS, every representation 7ti(X3) —* U(l) is trivial, but for a more general

QHS (say, one with cyclic fundamental group Zm), nontrivial representations

71] (X3) -+U(1) will exist. For the purposes of this discussion (where only the
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abelianization of the fundamental group matters), it suffices to consider the

case that X3 is a lens space, glue two solid tori Wx and W2 along a common
bounding 2-torus T. The inclusions of the boundary T —> d W¡■ c_ Wj induce
homomorphisms

Z®Z^ni{T)^m{Wj)^Z,

{x, y) i-» ajX + bjy

where a¡ and bj are relatively prime integers. Then the analogue X' of X is

the torus Hom^^T), U(l)) dual to nx{T). Explicitly, X' consists of repre-
sentations of the form

zez^u(i)
{x,y)~ e,(ax+ßy)

where a, ß e R. The analogues of the Q¡ are the circles Q'j (one-parameter

subgroups with respect to the structure of X as a group) defined by

a = ta}:,        ß = tbj.

All of the intersections of Q'¡ and Q'2 are transverse and have the same oriented

intersection number. The cardinality of Q.\^Q2 is the determinant m = aib2-

a2bi, the order of 7Ti(X3) . Thus #7r,(X3) may be regarded as an "abelian"
analogue of Casson's invariant.

The book under review is a monograph describing Walker's extension of Cas-

son's invariant to QHS. This was Walker's 1989 Berkeley doctoral thesis, and
a summary of this work may be found in his research announcement [13]. The

idea of Walker's generalization is similar to Casson's definition: sum local ex-

pressions over the intersections of Qi and Q2 in X, after perhaps making a

generic perturbation to make them transverse. However, the presence of sin-

gularities in these spaces produces significant technical problems. Using the

symplectic geometry of X (in which the Q¡ are Lagrangian), Walker defines

local invariants which give a meaningful invariant. Section 1 is background

information on the moduli spaces of representations and its symplectic geome-

try. Section 2 contains the definition of A(X3), and §3 develops its elementary

properties. Many of these were proved by Casson in ZHS case. Section 4

proves the surgery formula: how X{Y?) behaves when surgery is performed on

a knot in a QHS. Conversely, uniqueness of Walker's invariant is proved in

§5: any function of rational homology spheres vanishing on S3 and satisfying

the surgery formula must equal A(X3). Section 6 contains various consequences

of this theory. For example, Walker's X is additive under connected sum and

relates to the Rohlin invariant of a spin QHS. Two appendices summarize re-

sults concerning Dedekind sums and Alexander polynomials which are needed
in the main body of the monograph.

This is a fascinating subject, and Walker's book is informative and well writ-

ten. Together with [1] it makes a rather pleasant introduction to a very active
area in geometric topology.

References

1. S. Akbulut and J. McCarthy, Casson's invariant for oriented homology 3-spheres: an exposi-

tion, Math. Notes, vol. 36, Princeton Univ. Press, Princeton, NJ, 1990.



104 BOOK REVIEWS

2. S. Boyer and D. Lines, Surgery formulae for Casson's invariant and extensions to homology

lens spaces, J. Reine Angew. Math. 405 (1990), 181-220.

3. S. Boyer and A. Nicas, Varietes of group representations and Casson's invariant for rational

homology i-spheres, Trans. Amer. Math. Soc. 322 (1990), 507-522.

4. S. Cappell, R. Lee, and E. Y. Miller, A symplectic geometry approach to generalized Casson's

invariants of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 22 (1990), 269-275.

5. C. L. Curtis-Budka, Casson-type invariants counting representations in low-rank groups, Doc-

toral thesis, Yale Univ. (1991).

6. A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), 5-240.

7. P. Kronheimer, M. Larsen, and J. Scherk, Casson's invariant and quadratic reciprocity, Topol-

ogy 30 (1991), 335-338.

8. Invariant de Casson-Walker des spheres dhomologie rationelle fibrees de Seifert, C. R. Acad.

Sei. Paris Sér. I Math. (1990), 727-730.

9. Un algorithme pour calculer l'invariant de Walker, Bull. Soc. Math. France 118 (1990), 363-

376.

10. Sur r invariant de Casson- Walker : Formule de chirurgie globale et generalisation aux varietés

de dimension 3 fermées orintees, C. R. Acad. Sei. Paris Sér. I Math. (1992), 437-440.

11. Global surgery formula for the Casson- Walker invariant, École Normale Supérieure Lyon,

preprint (May 1993).

12. C. H. Taubes, Casson's invariant and gauge theory, J. Differential Geom. 31 (1990), 547-599.

13. K. Walker, An extension of Casson's invariants to rational homology spheres, Bull. Amer.

Math. Soc. (N.S.) 22 (1990), 261-267.

William M. Goldman

University of Maryland

E-mail address : wmgQmath. umd. edu

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 30, Number 1, January 1994
©1994 American Mathematical Society
0273-0979/94 $1.00+ $.25 per page

The self-avoiding walk, by Neal Madras and Gordon Slade. Birkhäuser, Boston,
1993, xiv+425 pp., $64.50. ISBN 3-7643-3589-0

Practically everyone is familiar with simple random walk (or the drunkard's

walk) on the integer lattice in ¿-space, Zd , in which the walker moves at each

step from a site in Zd to one of its 2d neighbors, picking each of the neighbors

with the same probability l/{2d). Denote the position of the walk after n steps

by S„ , and let the walk start at the origin {S0 = 0). When the chemists started
investigating certain polymer molecules (such as rubber), it was suggested that

these might be long chains of carbon atoms with small side arms and that the
chain of carbon atoms might be modelled by a random walk. As chemists well

knew, actual carbon atoms in 3-space do not sit on the lattice Z3, but the angle

between successive bonds is essentially 120°. So they used the so-called free

flight model (described in [4, Chapter X] or [9, §§2.1-2.4]) with restrictions
on the angles between successive bonds. Nowadays the chemical and physical

literature, as well as the book by Madras and Slade, studies the self-avoiding
walk problems on Zd. This first seems to have been suggested by Montrai

[12]. If one prefers an angle of 120° between successive bonds, then one can


