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Practically everyone is familiar with simple random walk (or the drunkard's

walk) on the integer lattice in ¿-space, Zd , in which the walker moves at each

step from a site in Zd to one of its 2d neighbors, picking each of the neighbors

with the same probability l/{2d). Denote the position of the walk after n steps

by S„ , and let the walk start at the origin {S0 = 0). When the chemists started
investigating certain polymer molecules (such as rubber), it was suggested that

these might be long chains of carbon atoms with small side arms and that the
chain of carbon atoms might be modelled by a random walk. As chemists well

knew, actual carbon atoms in 3-space do not sit on the lattice Z3, but the angle

between successive bonds is essentially 120°. So they used the so-called free

flight model (described in [4, Chapter X] or [9, §§2.1-2.4]) with restrictions
on the angles between successive bonds. Nowadays the chemical and physical

literature, as well as the book by Madras and Slade, studies the self-avoiding
walk problems on Zd. This first seems to have been suggested by Montrai

[12]. If one prefers an angle of 120° between successive bonds, then one can
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study the problem on the "diamond structure", that is, a lattice whose vertex

set consists of the vertices of the tetrahedral lattice plus the centroids of the

tetrahedra. It is, however, believed that for the questions of interest here the

qualitative nature of the results is not changed by working on Z3 instead of

the diamond structure. In fact, the universality hypothesis of statistical physics

(see below) claims that even important quantitative aspects, to wit the critical

exponents, are the same for walks on both lattices. Apparently one of the

quantities which could be experimentally measured for polymers in solution

was the radius of gyration, corresponding to [2(w'+1)L,{^"=0 ¿"=o l^< ~~ Sj\2}]l/2

(where | | stands for the Euclidean norm and E{ } denotes the expectation with

respect to the random walk distribution or, equivalently, the average over the

{2d)n possible random walk paths of n steps). This provided some measure

of the diameter of the polymer molecule. For the sake of simplicity one usually

studies the "mean square end to end distance" L'd^l2} (recall So = 0) instead

of (the square of the) radius of gyration. Of course, it is well known that

for random walk £'{|5'„|2} = n, and the classical central limit theorem even

gives us full information about the distribution of S„ls/h~. The more refined

invariance principle even tells us that the (random) function t —»• S^ni/s/ñ,

0 < t < 1, behaves like the Wiener process. Roughly speaking, this says that

the distribution of many functionals of the path t —> Syn¡ /Vñ converge to

the distribution of the same functional of the Wiener process; [2] is a standard
reference for such theorems.

Kuhn [ 10] already pointed out that no two atoms could overlap, but no rigor-

ous arguments were available to take this "excluded volume effect" into account.

In Montroll's lattice formulation [12] it was natural to model the fact that no

two atoms could overlap by replacing ¿'{l-S'nl2} by

(1) (|Sn|2) = i^|S„|2,

where the sum runs over all self-avoiding walks of n steps and c„ denotes the

number of such n-step walks. A self-avoiding walk of n steps is defined to be a

path So, Si,... , Sn with S¡ ^ Sj for /' ̂  j (again we restrict ourselves here to
So = 0). The procedure to assign the same weight \/c„ to all such walks in the

average (1) and similar averages is motivated by the situation for unrestricted
random walk, in which random walk measure assigns the same measure (2d)~"
to each «-step walk.

The principal objects of study in the theory of self-avoiding walks have been

the asymptotic behavior of c„ and (\Sn\2) and some related functions. This

may seem a narrowly focused field of study, but these questions have turned

out to be extremely challenging. The fact that the principal questions can be
stated so simply gives them a special appeal (to some people). Moreover, the

quantities c„ and {\S„\2) exhibit behavior which is quite similar to that of
certain functions in critical phenomena, such as magnetism. In fact, in a formal

sense, as explained in Chapter 2 of this book, the self-avoiding walk model

is a limit of a common spin model from statistical mechanics, the TV-vector

model. Despite the enormous physics literature very few rigorous results about

behavior of functions near a critical point have been proven. Self-avoiding
walks therefore provide a useful and appealing test problem to develop the

theory of critical phenomena. From the probabilist's point of view the appeal
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of the self-avoiding walk problems is that So, S\, ... , S„ is a natural example
of a highly non-Markovian sequence; to say something about Sk+i, it is not

enough to know Sk , nor even Sk, ... , Sk_j for some fixed j, but one should
know the full past, So, ... , Sk . Because of this non-Markovian nature few of

the existing tools of the trade apply, and also pure enumeration on a computer
becomes extremely difficult.

One expects the self-avoidance condition to make the walk more spread out.

That is, one expects that (|S„|2) > E{\S„\2} = n. In fact, it is believed that

(2) (|S„|2}~A""    ifd?M,

for some constant D\ and exponent v . In dimension 4 the relation

(3) <|S„|2)~A«(log«)1/4

has been conjectured. A measure of the difficulty of the subject is that no
rigorous proof exists for d — 2, 3 of (|S„|2) > nx+c for some e > 0 (which

would say that self-avoiding walks are truly more spread out than unrestricted
random walks), nor for d = 2,3,4 of (|S„|2) < n2~e (note that trivially

|5„| < n). Hammersley and Morton [6] observed that

(4) Cn+m S CnCm

and that this implies

(5) (cn)xln^p   and   cn>pn

for some constant p, the so-called connective constant. The submultiplicative

property (4) has played a fundamental role in many of the asymptotic bounds
for cn which are explained in Chapter 3. A conjectured sharper form for (5) is

(6) cn~D2n?-xpn

(again with logarithmic correction factors when d = 4). y and v are called

critical exponents, and many more critical exponents have been introduced in

statistical physics. Several of these are discussed by Madras and Slade. Not

all these exponents are independent. It is believed on the basis of nonrigor-

ous assumptions that they satisfy a number of so-called scaling relations. The
universality hypothesis says that the values of these exponents depend only on

the dimension and not on the detailed structure of the lattice. The exponents

should have the same value for self-avoiding walks on the diamond structure

as on Z3, and similarly their values should be the same for the (planar) tri-

angular and honeycomb lattices and for Z2 . The renormalization group was

introduced in part to explain the universality hypothesis, but except for large

d neither the existence of the critical exponents nor their universality has been

proven. The connective constant will depend on the fine structure of the lattice,
and for this reason it is usually regarded as more important to understand the

critical exponents than to find the exact value of p..

As with other effects due to interactions, it is reasonable to believe that the

interactions become small when the dimension becomes high. More daringly,

one assumes that there exists an upper critical dimension d , such that ford>d

the critical exponents are no longer dimension-dependent and, in fact, equal the
exponents for some parallel model with minimal interactions. This so-called

mean field model for self-avoiding walks is the unrestricted random walk. For
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self-avoiding walks the upper critical dimension was assumed to be 4. One
reason why 4 plays a special role is that two independent simple random walks

have a strictly positive probability never to intersect (except at their common

starting point) if and only if d > 5 . Thus it was believed that for d > 5 ,

(7) cn ~ Dm"

and

(8) (\Sn\2)~D4n.

No rigorous progress on these relations was made until Brydges and Spencer
[3]. By means of the so-called lace expansion, they proved the analogue of (8)
for weakly self-avoiding walks (in which self-intersections are not ruled out,
but the weight of a path is taken proportional to (1 - e)numbei of »lf-intersections.

the authors actually stated that they could exclude large loops entirely from the

walk). Slade [13-15] improved this method to obtain (7) and (8) for the truly
self-avoiding walk in high d and even to prove a full invariance principle for

t —* S\t„Jy/h~, 0 < t < 1. The lace expansion can be viewed as a form of the

inclusion-exclusion principle from elementary combinatorics and can be used
here to give an expansion for the "two-point function"

oo

C7z(0,x):=£z"cn(0,x),

n=0

where c„(0, x) denotes the number of «-step self-avoiding walks from 0 to

x . This then leads to an estimate for small k of the Fourier transform

Gz(k):= £><*■* C7z(0,;c)

xZlß

and its derivatives, a so-called infrared bound. It had been known for some

time in analogy of results for spin models (see [1, 5] that such an infrared

bound can be used to prove mean field behavior for large d. Hara and Slade

[7, 8] recently proved (7) and (8) for d > 5 by further sharpening of the lace

expansion. This shows that the upper critical dimension is not more than 4.

Given the long history and difficulty of the subject, this was a major success.

The lace expansion and the proof of (7) and (8) as well as the full invariance

principle for high d form the centerpiece of the book under review (Chapters 5

and 6). For reasons of clarity and brevity the latest improvements of Hara and

Slade to cover all d > 5 are not included. Also, some other models to which

Hara and Slade successfully applied the lace expansion, such as percolation and

lattice animals, are briefly discussed.

Chapter 9 of the book further gives a detailed treatment of many numerical

and Monte Carlo methods which have been used to estimate critical exponents
and the connective constant. This chapter explains what is rigorously known

about these methods and proves, for instance, the result of Madras and Sokal

[11] that one of the known methods of simulation typically samples only an
exponentially small class of walks.

What can one expect for future work in this subject? There is general agree-

ment that the most important and challenging problem is to prove power law

behavior such as (2) and (6) for dimensions < d ; this is also the case for per-

colation and other critical phenomena. It may be overly pessimistic, but many
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people believe that the present methods are inadequate for this and that another

breakthrough will be needed. One may also want to prove power laws and mean

field behavior for large d for some alternative self-avoiding path models (some

of these are briefly mentioned in Chapter 10; they do not give the same weight

to all «-step self-avoiding paths).

In any case, the book by Madras and Slade gives an excellent introduction

for graduate students and professional probabilists to recent rigorous advances
in an important statistical physics model. This is the best place to find a self-

contained exposition of the lace expansion. The book is devoted to rigorously
proven results and does not attempt to give a full survey of the many nonrig-

orous physics and chemistry articles on self-avoiding walks. However, it does

make an effort to explain some of the physicists' reasonings behind the various
conjectures.
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