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For over sixty years a central question in modern analysis has been: Which
Banach spaces contain almost isometric copies of one of the classical sequence
spaces ¢y orl,, for some 1 < p < co? (A Banach space X contains almost
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isometric copies of a Banach space Y if for every ¢ > 0 there is an (into)
isomorphism T,: Y — X with |T;||||7;!|| < 1 +¢.) This problem originally
surfaced in a different form. It is a simple observation (which even appears in
Banach’s book [2]) that L,[0, 1], 1 < p < oo, contains subspaces isometric to
I, . This observation evolved into a question well embedded into the “folklore”
by the 1950s: Does every infinite-dimensional Banach space contain a subspace
isomorphic to ¢y or /,, for some 1 < p < oo ? As absurd as this question seems
today, it fit well into the naive world of Banach space theory of the 1950s. This
was a time of hopeful optimism when one could imagine that every separable
Banach space has a Schauder basis (the basis problem) or at least the approx-
imation property (the approximation problem); that every infinite-dimensional
Banach space was isomorphic to its subspaces of codimension 1 (the hyperplane
problem); that every Banach space would contain an unconditional basic se-
quence (preferably the unit vector basis of ¢y or /,) (the unconditional basic
sequence problem); and surely, every Banach space X would have a subspace Y
with a nontrivial projection (i.e., a bounded linear projection P: Y — Y with
rank P = rank(/ — P) = o0).

In 1950 James [17] made a serious first step in this theory by proving that
every nonreflexive Banach space with an unconditional basis must contain a
copy of ¢y or /; . Bessaga and Pelczynski [3] followed by showing that whenever
¢co embeds into a dual space X*, /; embeds complementably into X, and
hence [, embeds into X*. So there are no separable dual spaces containing
¢o . Pelczynski [30] then showed that every infinite-dimensional subspace of ¢
(resp. /,, 1 < p < o) contains almost isometric copies of ¢y (resp. /,). So
far the optimism was well supported. But there was also a warning sign that
all might not be in order. The awesome power of Grothendieck [15] had been
brought to bear in an attempt to give a positive solution to the approximation
problem—but to no avail. The year 1961 brought one of the most profound
results in Banach space theory, showing that all was well—at least locally.

Dvoretzky’s Theorem [8]. Every infinite-dimensional Banach space contains al-
most isometric copies of [, forevery n=1,2....

This was the first theorem in the “local theory” of Banach spaces which even-
tually split the field into two (highly competitive) parts, “local theory” and
“infinite-dimensicnal theory”. In 1964 James [18] made another important
contribution: If X is isomorphic to /; (resp. ¢p), then X contains almost
isometric copies of /; (resp. ¢o). This gave rise to the celebrated distortion
problem: If a Banach space X has a subspace isomorphic to /,, 1 <p < o0,
must X contain almost isometric copies of /, ?

By the end of 1971 optimism had reached its peak. Lindenstrauss and
Tzafriri [23] had given an affirmative answer to the complemented subspaces
problem: If every subspace of a Banach space X is complemented, then X is
isomorphic to a Hilbert space. The same authors [24] used the Banach fixed-
point theorem to show that the Orlicz sequence spaces contain almost isometric
copies of ¢y or /,. This was the first class of spaces where the problem did not
have an obvious answer. Although there was a small surprise here (there are
Orlicz spaces which contain no complemented copies of /,), the success of this
approach convinced many people that the general problem had an affirmative

answer.
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In 1973 infinite-dimensional Banach space theory entered “the era of coun-
terexamples”. First, James [19] constructed James’s tree (JT) as the first sep-
arable Banach space not containing /; with a nonseparable dual space. The
big news, however, was that Enflo [9] had constructed a Banach space failing
the approximation property. Grothendieck’s research into the approximation
problem [15] had established a connection with real analysis; namely, a coun-
terexample to the approximation problem yields a counterexample to a question
of Mazur from the “Scottish book” [26, problem #135]

Given a continuous function f(x, y) for 0 < x, y <1 and the
number ¢ > 0, do there exist numbers a;, ..., a,, by, ..., by,
and ¢y, ..., ¢, with the property that

1f(x,¥) =) eflaw, v)f(x, bi)l < e
k=1

in the interval 0 < x, y<1?

While Enflo was traveling to Warsaw to receive his “live goose” on Polish tele-
vision (the prize offered in the Scottish book), Davie, Figiel, and Szankowski
(see [25]) were exploring the limits of these ideas. Thanks to their efforts we
know that every /,, p # 2, contains subspaces failing the approximation prop-
erty. It is interesting that for 2 < p < co these were the first known examples
of subspaces of /, which are not isomorphic to /,.

The dust had not even settled before Tsirelson [36] produced a surprisingly
simple construction of a Banach space with an unconditional basis which con-
tains no subspace isomorphic to ¢y or /,, 1 < p < co. The study of “Tsirelson-
like” spaces quickly grew into an industry (see [7] for a complete treatment),
and the problem it destroyed was rephrased as: Does every Banach space con-
tain ¢y, /;, or a reflexive subspace? But 1974 also produced another profound
result of the modern era—

Rosenthal’s /,-theorem [31]. Every bounded sequence in a Banach space has
either a weakly Cauchy subsequence or a subsequence equivalent to the unit vector
basis of I, .

That is, given ¢~! < ||x,|| < ¢ in a Banach space X, either

(1) there is a subsequence (x,) so that lim; . f(x,,) exists for every f €
X* or

(2) there is a subsequence (x,,) and a constant K > 1 sothat K~' Y72, |a;| <
| 3o aixnll < K32, |ai| for all choices of scalars (a;) .

The introduction of spreading models by Brunel and Sucheston [4] gave new
hope for a positive answer to the remaining classical problems. If (x,) is a
bounded sequence in a Banach space X, there is a subsequence (for simplicity
denote it (x,) again) satisfying

lim exists
nyp<-<ny
ny—oo

K
2 aixn
i=1

for every sequence of scalars (a,-)f‘=l . The subsequence we obtain is called a

spreading sequence, and the infinite-dimensional Banach space it naturally de-
fines is called a spreading model of X . By choosing (x,) weakly convergent to
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0, the spreading model has an unconditional basis and is finitely representable
in the original space. Although spreading models are now a standard tool in
the field, they did not resolve these classical problems. How close we can get
to having ¢y or /, inside a Banach space was established by a powerful result
of Krivine [21]: If (x,) is a basis for a Banach space X (or for ¢g), there is
a p so that the unit vector basis of [, is block finitely representable on (x,).
In fact, for every natural number m and every ¢ > O there is a block basic
sequence (y,) in X (i.e., y, = f;;',. +14@iXi, Po < p; < --- natural numbers)
so that

m 1/p
<(1+e) (Z |b,~|”>
i=1

m 1/p
(1-¢) (Z |b.-|1’) <
i=1

m
z bi.Vni
i=1

for every n; < ny < ---. For a complete treatment of spreading models,
Krivine’s theorem, and related “asymptotic properties” the best reference is
[28].

For the next fourteen years the remaining classical problems kept their reputa-
tion for intractability intact. But in 1990 Schlumprecht produced a significant
new example in Banach space theory [34, 35]). Schlumprecht’s space S was
much more than just another generalization of Tsirelson’s space. In the skilled
hands of Gowers and Maurey [14] it became the catalyst for the construction
of Banach spaces containing no unconditional basic sequences. Johnson (see
[14]) observed that a slight variation of these techniques produced hereditarily
indecomposable Banach spaces (i.e., Banach spaces X for which no subspace
has a nontrivial projection). The aura of invincibility for these classical prob-
lems was broken, and they were standing unprotected before an army of (now
well-armed) giants. Although the outcome was predictable, the swiftness of
the victory was not. Almost immediately Gowers [11] produced a Banach space
with an unconditional basis not isomorphic to its hyperplanes. He followed this
[12] with a Banach space which does not contain ¢y, /;, or a reflexive subspace.
But he was not done yet. There was still the Schroeder-Bernstein problem: If
two Banach spaces X and Y are isomorphic to complemented subspaces of
each other, is X isomorphic to Y ? Proving more, Gowers [13] constructed a
Banach space X so that X is isomorphic to its “cube” but not its “square”,
ie, XZX®X=Y,but X~X&X®X. Not to be outdone, Schlumprecht
and Odell [29] brought the classical “Mazur map” back to life to show that /,,
for 1 < p < o0, has arbitrarily large distortions. So there are Banach spaces
isomorphic to /,, 1 < p < co, which do not contain almost isometric copies
of [,.

Among the few classical problems remaining open in this circle of ideas are:

The Homogeneous Banach Space Problem. If X is isomorphic to all of its
infinite-dimensional subspaces (i.e., X is homogeneous), then must X be iso-
morphic to /,?

The Unconditional Basis Problem. If every subspace of X has an unconditional
basis, then must X be isomorphic to /, ?

Complemented Subspaces of Spaces with Unconditional Bases. Does every com-
plemented subspace of a Banach space with an unconditional basis have an
unconditional basis?
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Compact Perturbations of the Identity. Is there a Banach space on which every
bounded operator is a compact perturbation of the identity?

The L,-Problem. Is every complemented subspace of L;[0, 1] isomorphic to
11 or L][O, 1]?

The C[0, 1] Problem. Is every complemented subspace of C[0, 1] isomorphic
to C(K) for some compact metric space K ?

Separable Quotients. Does every Banach space have a separable quotient space?

This new round of counterexamples led Vitali Milman to remark, “Is this
the rebirth of infinite-dimensional theory or the final nail in its coffin?” This
reviewer would view these as the end of the “naive” period and the beginning
of the era of virtual reality. We can now go forward with a renewed optimism,
steeped in the knowledge that Banach space theory is a much deeper subject than
could have been envisioned at any time since its creation. And there are still
basic structural results which hold. One example is a recent result of Rosenthal
[33] which classifies those Banach spaces containing a copy of ¢y as those spaces
containing a nonreflexive subspace Y so that every subspace of Y has a weakly
sequentially complete dual space.

The book under review addresses the question, Which Banach spaces contain
almost isometric copies of ¢y or /,? Admittedly, we have left the impression
that this question has no satisfactory answers. It is time to rectify this. In a
deep paper in 1980 [1] Aldous showed that every subspace of L,[0, 1] contains
almost isometric copies of /;, for some g. Krivine and Maurey [22] then iso-
lated the main ingredient in Aldous’s proof to define the class of stable Banach
spaces. A separable Banach space X is stable if, for all bounded sequences (x,)
and (y,) in X and all nontrivial ultrafilters %, 7 on the natural numbers,
we have

}lig} 'LI’II?I/ IXn + ymll = ilfg }llgyl 1Xn + Vmll.

Many naturally arising spaces are stable, including L,-spaces for 1 < p < oo
[22] (co and L[0, 1] are not stable). Chapter III of the book is devoted to a
detailed proof of the Krivine-Maurey result that stable Banach spaces contain
almost isometric copies of /,, for some 1 < p < 0co. Clearly, subspaces of stable
spaces are stable, so this contains the Aldous result. There is also another result
of Krivine and Maurey in Chapter III: L,(X) is stable if X is stable. Therefore,
every subspace of L, (Lp,(Lp,(---))) contains almost isometric copies of /, , for
some g .

Chapter II contains the necessary background on spreading models and ul-
trapowers as well as Krivine’s theorem on the block finite representability of cp
or some /, on every basis.

Chapter IV addresses the question of which I,’s embed almost isometrically
into a subspace of L,. There is the Kadec-Pelczynski result [20] that every
infinite dimensional subspace of L,[0, 1] (for 2 < p < o) is either isomorphic
to [, or contains almost isometric copies of /,. For 1 < p < 2 the situation
is complicated by the fact that /, is isometric to a subspace of L,[0, 1], for
all ¢ € [p, 2] (and no other /. embeds into L,[0, 1]). But there we have
the Guerre-Levy theorem [16] which identifies precisely our copy of /, inside a
subspace of L,[0, 1]; namely, if X is an infinite-dimensional subspace of L,,
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1 <p < oo, then I,y is almost isometric to a subspace of X where

p(X) = sup{p € [1, 2]|X is of Rademacher type p},
q(X) = inf{q € [2, 00)|X is of Rademacher cotype g}.

This is the infinite-dimensional version for L,[0, 1] of the Maurey-Pisier The-
orem [27): Every Banach space X contains almost isometric copies of 1;( X)
and I;’(X), forevery n=1,2,....

The case p = 1 is covered by the Aldous result. But prior to this, Kadec
and Pelczynski [20] showed that an infinite-dimensional subspace of L,[0, 1] is
either reflexive or contains almost isometric copies of /; . The elegant result of
Rosenthal [32] is not proved in the book. It states that a subspace of L,[0, 1],
which does not contain /; , must embed into L, , for some 1 <p <2.

Chapter I of the book contains proofs of several, now classical, results. This
chapter includes proofs of

(1) Rosenthal’s /;-theorem,

(2) the Bessaga-Pelczynski characterization of Banach spaces containing ¢,

(3) James’s proof of the nondistortability of ¢y and /;,

(4) the existence of subspaces of /, (for 2 < p < o) without the approxi-
mation property, and

(5) the Figiel-Johnson construction of Tsirelson’s space [10].

Many of the techniques developed in this book have heretofore been available
only in research papers. The terse and concise presentation helps to keep the
technical details from obscuring the ideas but may require some adjusting to.
The book is intended for graduate students and is reasonably well self-contained.
Although the depth of the material will hamper rapid progress, the rewards will
include a glimpse at some of the most beautiful and significant results in the field
and exposure to techniques quite different from those one usually encounters
in modern analysis. Also, students will benefit from exposure to the important
theory of ultraproducts.

Although the book contains a number of typographical errors, they are ob-
vious enough so as not to be a serious impediment. (One of them, however,
rendered Proposition I.1.13(iii) false as stated. It should read: Span[x, : n € N]
and span[y, : n € N] are naturally isomorphic. That is, the operator defined
by Tx, =y, is an isomorphism.)

Finally, the reviewer would have preferred to see more attention to detail in
the referencing of the material. Here are just a couple of examples:

(1) Saying that the proof of Corollary 1.7.4 comes from a book of Beauzamy
and Lapresete disguises the fact that the proof there is due to Figiel and Johnson
[10] (in fact, this “secondary referencing” technique is very heavily employed
in the book).

(2) Despite the statement on p. 35 that Paley gave the value of the uncon-
ditional constant for the Haar system in his 1932 paper, the value was not
discovered until fifty years later (Burkholder [5, 6]).

Just before this book review appeared, two recent papers combined to pro-
duce a positive answer to the homogeneous Banach space problem. First,Ryszard
Komorowski and Nicole Tomczak-Jaegermann [39] showed that a homogeneous
Banach space which contains an unconditional basic sequence is isomorphic to
a Hilbert space. Next, W. T. Gowers [38] proved that a Banach space which
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contains no unconditional basic sequences must contain a hereditarily inde-
composable subspace. Since it was known (see [37]) that homogeneous Banach
spaces are decomposable, it follows that every homogeneous Banach space is
isomorphic to a Hilbert space.
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Serre’s book is a set of topics. It contains historical origins and applications
of the inverse Galois problem. Its audience is the mathematician who knows the
ubiquitous appearance of Galois groups in diverse problems of number theory.
Such a mathematician has heard there has been recent progress on the inverse
Galois problem. Serre has written a map through the part of this progress that
keeps classical landmarks in sight. We will describe Serre’s view of present
achievements toward that goal and comment on the territory he ignored. We
will denote Serre’s book by [Se] throughout the review.

Galois theory is the supreme topic in an area once called the Theory of Poly-
nomials. Versions of the inverse Galois problem have immediate application
in algebraic number theory, arithmetic geometry, and coding theory. This in-
cludes applications driven by the theory of finite fields. Until recently, however,
attacks on the problem were ad hoc. Even when general approaches arose in
the late 1970s, acceptance took a long time. Then special approaches still held
promise. Examples now show why earlier methods will not solve the complete
problem.




