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The history of partial differential equations (PDE) is very long. The beginning

can be traced back to the middle of the eighteenth century, when D'Alembert,

Euler, and Bernoulli studied the equation of a vibrating string. This was just an

example of a PDE but a very important one, coming as it did from mathematical

physics. For this reason it was also very exciting, since one could easily observe

the correspondence between theory and nature. Already this very simple (by

modern standards) example stimulated a discussion between D'Alembert and

Euler about the scope of functions to be considered; D'Alembert felt that only

analytic functions should be considered, whereas Euler advocated the use of

more general functions, since the string can really take any form (not necessar-

ily analytic). This discussion influenced the further development of function

theory. Other important equations (the Laplace equation and the 2- and 3-

dimensional wave equations) also appeared in papers by D'Alembert and Euler,

but only particular solutions were considered.

At the beginning of the nineteenth century important new equations taken

from mathematical physics were studied more thoroughly (the Laplace and Pois-

son equations and the heat equation, which was first introduced by Fourier), but

also a glimpse of general theory appeared (the potential theory of Green and

Gauss). Then Cauchy was one of the first to value a general theory by itself,

independently of applications. This produced the ideas behind the Cauchy-

Kovalevskaya theorem—one of the first general theorems about PDE.

When nonanalytic functions were accepted by mathematicians in the second

half of the nineteenth century, it was natural to try to pass from analytic to

more general functions (e.g., smooth ones) in the general Cauchy problem. But

Hadamard was the first to realize that this was absolutely nontrivial. Early
important achievements to hyperbolic equations were obtained by Hadamard

himself, but the first really significant progress for more general equations was

due to Petrovsky.



136 BOOK REVIEWS

In 1938 Petrovsky considered the Cauchy problem for a general system of

PDE with constant coefficients
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with the initial conditions
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(Actually, Petrovsky also considered equations with coefficients depending on t,

but there the result is not as effective, so we will discuss only this simpler case.)

The main result of Petrovsky for the Cauchy problem ( 1 )-(2) is as follows: This

problem is correct in classes Ck if and only if the following condition (A) is

satisfied: the imaginary parts of the roots (with respect to X) of the algebraic
equation
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are uniformly (in Ç) bounded below by a constant. In later terminology such
systems are called correct in the sense of Petrovsky.

There are important classes of correct (in the Petrovsky sense) equations

(or systems) where the theory can be advanced much further. The best-known

examples are (strictly) hyperbolic and parabolic systems. Then variable coeffi-
cients can also be considered, and some important qualitative information can

be obtained. However, it is always tempting for a mathematician to advance
the theory to a maximal generality.

After creation of the theory of distributions in papers by S. Sobolev and
L. Schwartz, a second wind came to the general theory of PDE. The theory

of distributions was really the language that was needed to work effectively in
many domains of PDE.

It is well known how important it is to consider not only smooth solutions
but distribution solutions as well. The reason is the important role of the fun-
damental solutions (or Green functions) for constant coefficient equations and

their Cauchy problems. And it so happens that the easiest way to describe
fundamental solutions is to consider them as distributions.

In 1950-51 L. Schwartz reformulated Petrovsky results in the language of dis-
tributions. He also considered general convolution operators instead of deriva-

tives in (1). In this way the Cauchy problem (l)-(2) can be reformulated for the
general convolution equations. The simplest way is not to try to find a proper

replacement for the initial conditions (2) but to switch to considering the equa-
tion with the right-hand side which vanishes in the half-space t < 0 and to

look for solutions which also vanish there (this is the so-called "homogeneous
Cauchy problem").

The next important development in the general theory of linear PDE is the

invention of pseudodifferential operators. They present a natural substitute for

convolution operators when the coefficients are variable, and in fact they allow
us to work with a function and its Fourier transform simultaneously (hence

the term "microlocal analysis"). The pseudodifferential operators also provide
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a tool to pass from some solvability results for the constant coefficient case to

variable coefficients, provided the coefficients are sufficiently smooth and some

reasonable uniformity for the constant coefficient problems (with coefficients

"frozen" at an arbitrary point) is guaranteed.

Now we come to the main goal of the authors of the reviewed book: to give

an up-to-date interpretation of the Petrovsky classical work. This includes, in

particular, proper generalizations of condition (A) to convolution equations;

extension of existence, uniqueness, and correctness results to a much wider

spectrum of function spaces; and passing from convolution operators (which

are analogues of differential operators with constant coefficients) to pseudodif-

ferential operators which already generalize differential operators with variable

coefficients. The authors pursue this goal with a rare thoroughness; they discuss

as many function spaces as possible in the chosen approach.

In Chapter 1 convolution equations are investigated in spaces of strongly

decreasing and slowly increasing functions and distributions, starting with the
Schwartz space and then passing to weighted Ck and Sobolev spaces (with

power weights possibly multiplied by an exponent exp(<y, x)). The most im-

portant idea here is that the solvability of a convolution equation in function

spaces is usually equivalent to the existence of the fundamental solution which is

a "convolutor" (in corresponding spaces) or (equivalently) has a Fourier trans-

form which is a multiplier in the Fourier transformed spaces. Therefore, in

this and subsequent chapters the authors try to make a complete description

of convolutors and multipliers in all possible scales of function spaces. Also,

Schwartz-type kernel theorems are proved in many different function spaces.

Chapter 2 treats the homogeneous Cauchy problem for convolution equations

in spaces of strongly decreasing and slowly increasing functions and distribu-
tions. After Fourier transform this amounts to considering spaces with some
appropriate analyticity conditions. In Chapter 3 the spaces of exponentially de-

creasing and increasing functions and distributions are considered, which leads

to a notion of exponential correctness (different from the notion of Petrovsky
correctness).

Chapter 4 treats a nonhomogeneous Cauchy problem for convolution equa-

tions. For differential equations this problem can be treated if we just extend

the solution to the half-space t < 0 by 0 and then apply the operator; the

Cauchy data (4>u(x) in (2)) emerge then in the right-hand side of the equation

tensored with the Dirac ¿-function and its derivatives. Therefore, we arrive
at the necessity of studying the equation in the whole space but in spaces of

distributions which are more smooth when t > 0. This is exactly what the
authors do in this chapter.

Chapter 5 treats at last the "variable coefficients" case, i.e., the Cauchy prob-
lem for pseudodifferential equations. Here the general philosophy of the authors
pays off; the thorough study of the constant coefficient case made in Chapters

1-4 allows pretty smooth transition to variable coefficients. The same spaces

and types of problems as in previous chapters are considered here, and the

only difference is that now the solvability conditions are only sufficient (and not
necessary).

The last chapter, Chapter 6, is about the Wiener-Hopf equations. Here the

difference with the standard convolution case is in fact only in the choice of

spaces, but this difference is significant. The operators act from a subspace to a
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quotient space of usual function spaces, hence the necessity of a factorization of
symbols, which is a difficult problem by itself. The corresponding results extend

the classical work by M. Krein and many other authors. The real difficulty here
is an instability of the factorization, so variable coefficients are not considered.

The strong point of the book is that it treats the convolution equations with

an exhaustive thoroughness which was without doubt difficult to achieve. So I

definitely recommend the book to the experts who work in this area. Most parts

of it might also be useful for graduate students to supplement an advanced PDE

course.

Mikhail A. Shubin

Northeastern University
E-mail address : shubinQneu. edu

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 30, Number 1, January 1994
©1994 American Mathematical Society
0273-0979/94 $1.00 + $.25 per page

Subgroups of Teichmüller modular groups, by Nikolai V. Ivanov. American
Mathematical Society, Providence, RI, 1992, xii + 127 pp., $107.00. ISBN
0-8218-4594-2.

Let us consider a compact orientable surface S, possibly with boundary.
The Teichmüller modular space Mods of S is the group of isotopy classes of
orientation-preserving homeomorphisms of S. Namely, Mods is the quotient

of the group of all orientation-preserving homeomorphisms of S under the

equivalence relation which identifies two such homeomorphisms fo, f : S -»
S when they can be connected by a continuous family of homeomorphisms

f,:S-*S, *e[0,l].
This ubiquitous group plays a fundamental role in the theory of Riemann

surfaces and in algebraic geometry because of its connection to the moduli

space of curves. To simplify the exposition, let us temporarily restrict attention

to the case where S has no boundary. The moduli space Jfs is the space of all

complex curves with the same topological type as S, where we identify two such

curves when there is a holomorphic homeomorphism between them. Another

way to express this is to say that J?s is the space of all complex structures on

5, where we identify two complex structures when there is a homeomorphism

/ : S —► S sending one to the other. Although the moduli space is probably
geometrically more relevant, a more convenient space is the Teichmüller space

$s. The définition of ^ is similar to the second definition of the moduli
space, but in this case we identify two complex structures on S only if there

is a homeomorphism isotopic to the identity sending one to the other. One
of the advantages of the Teichmüller space is that it can be given nice sets of

coordinates and that it is a contractible manifold. There is an obvious action

of Mods on $s > whose quotient is clearly Jfs ; in addition, this action is

properly discontinuous. In other words, the group Mods plays the same role in


