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tions give to geometrical studies of Riemann surfaces, and that is the central
theme here. This is a thick and leisurely book which will repay repeated study
with many pleasant hours—both for the beginner and the expert. It is fortu-
nately more or less self-contained, which makes it easy to read, and it leads
one from essential mathematics to the “state of the art” in the theory of the
Laplace-Beltrami operator on compact Riemann surfaces. Although it is not
encyclopedic, it is so rich in information and ideas that, rather than complain-
ing about what is missing, the reader will be grateful for what has been included
in this very satisfying book.
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This is a book that deals with an exciting ten-year period—roughly 1954-
1964—of epochal discoveries in the theory of differential (or differentiable)
manifolds and is, to the best of my knowledge, the first systematic, comprehen-
sive account of them written as an upper-level graduate text or for independent
study. Ten years is a rather short time in the rich history of this subject, and it
may be useful to give some idea of how the core subjects covered in the book
fit in.

First, some definitions. A (topological) manifold M of dimension n is a
locally Euclidean Hausdorff space satisfying some separability condition, say,
with a countable basis of open sets. Locally Euclidean means that each point in
M lies in a coordinate neighborhood, an open set U equipped with a homeo-
morphism ¢ to an open subset of Euclidean space R". It becomes a differential
manifold if it can be covered with a collection of such neighborhoods {U,, ¢.}
such that the change of coordinates ¢g o ¢;1 is smooth (i.e., C*) whenever
U,, Ug overlap. Any such collection is called a differential structure on M. A
manifold M is triangulable if it can be decomposed into simplices (or other
simple polyhedra, e.g., cubes) fitting nicely along their faces. Each of these three
definitions carries a corresponding notion of equivalence, namely, homeomor-
phism, diffeomorphism (differentiable homeomorphism), and piecewise linear
equivalence, respectively. It is the differential structure which allows the use
of calculus on manifolds, differentiable functions and mappings, vector fields,
tensors, and so on.

Although these definitions are now standard and known to most mathemati-
cians, they took some eighty years, beginning with the work of Riemann until
Whitney’s 1936 paper [11], to achieve this precise form. It is hardly an exagger-
ation to say that manifolds are the most important spaces in mathematics. In
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addition to the Euclidean spaces R", the unit spheres S"~! in R", and other
standard examples, manifolds include the spaces of classical geometries (e.g.,
real or complex projective space), Riemann surfaces, Lie groups, symmetric
spaces, phase spaces of dynamical systems, nonsingular algebraic varieties, and
others. They are important almost everywhere in mathematics from calculus
on.

As soon as the definitions are given, problems come to mind, the most imme-
diate being to construct systematically examples in each dimension and, if one is
an optimist, to look for some classifying properties. How many such spaces are
there? The topological conditions imply that the connected components, them-
selves manifolds, are open and closed and countable in number. When n =1,
the only connected manifolds are the real line R and circle S!. Thecase n =2,
or surfaces, is more interesting: all compact, connected, orientable manifolds
may be obtained by the familiar procedure of removing pairs of open disks from
S? and pasting a cylinder, or handle, by fastening each of its end circles to the
boundary circle of a removed disk. A variation of this procedure yields the
nonorientable ones as well. These manifolds have been known for more than a
century, albeit without rigorous proofs until about 1925. (We note in passing
that the disk and cylinder mentioned here, in addition to line segments and rays,
are examples of a slightly more general concept: manifold M with boundary
OM , a manifold of dimension one less. To include these, the definitions need
only be slightly modified: allow the coordinate neighborhoods U, f to include
homeomorphisms into the half space R?{(x, ..., X»): Xn > 0}. The points
with coordinates for which x, = 0 constitute M , a manifold of dimension
n-—1.)

Beyond classification and questions of examples, many of which may be con-
structed by pasting together polyhedra or manifolds with boundary in various
ways, each of the three definitions above raises fundamental questions. For
example, does every manifold admit a differentiable structure; and if so, is it
unique to within diffeomorphism? Is every manifold triangulable; and if so, is
this structure unique (the Hauptvermutung) to within piecewise linear equiva-
lence? Does triangulability imply a differential structure or vice versa? The fact
that these questions were answered fairly early for n = 2 but proved to be a very
elusive and long-resisted solution for higher dimensions probably contributed
to the development of this subject.

Both manifold theory and algebraic topology owe everything to the insight,
originality, and genius of Henri Poincaré, who, beginning around 1892 until
his death in 1912, returned to this area again and again, introducing strikingly
original ideas and crucially important tools and raising basic questions that are
still studied today. In particular, we owe to him the idea of associating groups
to manifolds, groups invariant with respect to homeomorphisms, and thus mea-
suring topological properties of these spaces such as genus and connectivity,
which were previously measured by numbers. He did this in two ways: first, he
introduced the homology groups, which already proved sufficient to classify the
compact two-dimensional manifolds; and second, he defined the fundamental
group™7m (M, p) whose elements are equivalence classes of loops in M from
D € M with respect to continuous deformation of the loop. The first led to ho-
mology and cohomology theory, and the second ultimately resulted in the use
by Hopf and Hurewicz of homotopy, homotopy groups 7n,(M, p), and a new
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equivalence—homotopy equivalence. The elements of 7,(M, p) are deforma-
tion classes of continuous mappings of S” into M taking a fixed point of S”
to p. (Note that a loop at p is a continuous image of S! passing through
p.) Two spaces X and Y are homotopically equivalent if there are continuous
mappings f: X — Y and g:Y — X whose compositions fog and go f
can be continuously deformed to the identity maps of X and Y ; homotopy
groups are the same for X and Y . One of the most famous mathematical con-
jectures is related to these considerations. S' and S? are easily characterized
as compact orientable manifolds by the groups introduced by Poincaré, but he
was unable to so characterize S3. He then asked if any compact 3-dimensional
manifold for which 7; is trivial is homeomorphic to S3. All attempts to prove
this and its generalization to S", n > 3, failed for more than fifty years. These
efforts resulted in one of the best-known unsolved problems in mathematics,
which became known as the (generalized) Poincaré Conjecture: If a compact
orientable (differential) manifold is homotopically equivalent to S”, then is it
homeomorphic to $”? M is homotopically equivalent to S” if n;(M, p) is
trivial and it has the same homology groups as S” or, again, if every contin-
uous map f: S¥ — M is deformable to a mapping to a single point p for all
k<dimM.

Poincaré’s work, like that of Riemann and other predecessors, was very geo-
metric and intuitive, without precise proofs, and often difficult to follow (see
the comments of Dieudonné [2]). Careful, rigorous methods were developed by
Weyl for Riemann Surfaces (for some interesting history see [12]), Brouwer for
simplicial complexes (thus triangulated manifolds), and others. Now on a firm
foundation, homology theory and later homotopy theory developed enormously
with many successes in the following years but often in topological spaces much
more general than manifolds, leaving the fundamental questions involving them
in the background, impenetrable and seemingly unknowable.

Even though Poincaré’s manifolds were both piecewise linear and differen-
tiable, it was not known how to use this additional structure effectively in an-
swering some of the fundamental questions about manifolds. One notable ex-
ception as it now appears was the work of Marston Morse in the 1920s that
relates the critical points of a function on a differential manifold to its homol-
ogy. Then in 1936 Whitney in a famous paper [11] gave a careful definition of
smooth manifolds (the one above) and showed that they were all diffeomorphic
to submanifolds of M c RN, which had been assumed without proof by almost
all the pioneers from Riemann on. This coincided with the introduction of the
concept of fiber bundle developed by Whitney and others. The most natural
examples are the “bundle” or space of all vectors tangent to M C R and the
bundle of all vectors normal to it. These are themselves differential manifolds
with obvious smooth projections onto M taking each vector to its initial point.
From this point on, “differential topology” came into its own.

A decisive event in our story was the creation of cobordism theory in the
early fifties by Thom, which shortly thereafter (1956) was used by Milnor in a
short paper [7] in which he showed that there are differential structures on the 7-
sphere S’ which are not equivalent under any diffeomorphism. This profound
and unexpected discovery was followed by a veritable explosion of results; and
it is these, all occurring within ten years or less, which form the subject of the
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book being reviewed. Within a very short time it was shown that there were, in
fact, twenty-eight differential structures on the oriented S’ and that they even
formed a group! A fundamental paper of Milnor and Kervaire [5] reduced the
problem to homotopy groups of spheres and settled it for many dimensions.
Smale [8] proved the generalized Poincaré conjecture in the differentiable case
for dimensions > 4 (i.e., a smooth manifold M"” whose homotopy type is that
of S” is diffeomorphic to $”) and developed his handlebody theory [9], a par-
ticularly elegant way to build all differentiable manifolds by a generalization of
the pasting technique described above for compact surfaces. The breakthroughs
in understanding differential manifolds led to corresponding results in other fun-
damental questions mentioned above. It was shown that there are manifolds
with no differentiable structure, manifolds with no triangulation, manifolds with
inequivalent triangulations (counterexample to the Hauptvermutung), that the
Poincaré conjecture in dimension 4 was proved for topological manifolds, and
more. For a precise picture see the historical notes and references in the book
being reviewed.

In the intervening years since these events there have been books presenting
various aspects of differential topology; [1, 3, 4, 6, 10] come to mind, and there
are no doubt others not known to the reviewer. Hirsch’s book [4] is closest
to the spirit of the present book and is a very good introduction to it. Now
that some 25-30 years have elapsed since these discoveries were made, some
of the most difficult concepts have been clarified, extended, and refined, and
the proofs simplified so that happily the subject is now mature enough for a
simplified and unified treatment. The book being reviewed begins from a basic
knowledge of differentiable manifolds and algebraic topology (including some
homotopy theory) and proceeds to give a quite complete account with carefully
written demonstrations of the central core of these great theorems. Except for
the algebraic topology, of which more than a passing knowledge is needed, it
is relatively self-contained. The first eighty pages develop the elementary man-
ifold theory and differential topology needed for the sequel, more or less from
the definition of differential manifold. In particular, basic ideas and results on
transversality, isotopies, tubular neighborhoods and collars, and some Morse
Theory are included. These are topics which would normally not be familiar to
someone with just a basic knowledge of smooth manifolds, although they are
readily available in the earlier books mentioned above. Then, following a short
chapter on foliations that is not used elsewhere in the book, the author begins
a systematic development of material that is not, to the reviewer’s knowledge,
available in other texts. There is a detailed discussion of operations on mani-
folds, i.e., cutting and pasting of various types such as: connected sum, attaching
handles, surgery, and so on. This is very important and contains much of the
geometric intuition; it describes the way in which manifolds are put together
from known manifolds and generalizes the familiar picture mentioned before
of fastening cylinders to the sphere to build up surfaces. These preliminaries
take up a little more than half of the book.

The final four chapters contain the central core of the book. In them the
author presents and proves in detail the handlebody theorems, develops cobor-
dism, h-cobordism, and framed cobordism theories, and then discusses surgery.
In the course of doing so he proves many of the famous theorems of Thom,
Milnor, Smale, and others dealing with differential manifolds, including the A-
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cobordism theorem, the determination of the groups of differential structures
on spheres, the handlebody presentation theorem, and the proof of the differen-
tial Poincaré conjecture for n > 4. He has done an excellent job of organizing
this deep and difficult material so that it can be presented in a relatively short
book. The material is broken up so that there are virtually no long proofs; the
style is lively, and the writing is clear. For the independent reader I would have
preferred a slightly more leisurely pace, more intuitive discussion, and more il-
lustrations in some places, particularly the chapter on operations on manifolds;
but when it is used as a text, such commentary can be supplied by the instruc-
tor. As already noted, the prospective reader should be aware that although
the basics of differential manifolds are carefully, if compactly, presented, there
is no preparation for the homology and homotopy theory that is needed. On
the other hand, there is an excellent bibliography with references to expository
material, fundamental research papers, and even historical papers; so there is
no problem in finding sources to fill in any gaps. There are, in fact, many inter-
esting historical notes, which are much appreciated by this reviewer. Manifold
theory has been an important, central part of mathematics for a century; and
all readers, students most particularly, will be edified and inspired by knowing
the history of this beautiful and important subject.

It should add to the attractiveness of this book that the story is far from
complete and is an extremely active subject of research now and in the recent
past. Many of the results above are for dimensions > 4, leaving important
questions in dimensions 3 and 4 unsettled. For example, it was discovered
in the 1980s that familiar Euclidean space R* has inequivalent differential
structures! Moreover, amazingly, these seemingly arcane and exotic ideas have
suddenly and unexpectedly come to be important in theoretical physics. Finally,
it should not be forgotten that some of the original questions, in particular, the
Poincaré Conjecture in dimension 3, appear to be still unsolved; nor is it known
if S* possesses inequivalent differential structures. How useful for mathematics
it is to have a single, short, well-written book on differential topology where
one can study the great discoveries of the sixties and prepare for exciting new
developments of the nineties.
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Systems of evolution equations with periodic and quasiperiodic coefficients, by
Yu. A. Mitropolsky, A. M. Samoilenko, and D. Martinyuk. Mathematics and
Its Applications (red series), Kluwer Academic Publishers, Dordrecht, The
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To unify somehow the content of the book, the authors have chosen the key
words “Evolution Equations”. It is not my intent to propose another key word,
but I have the feeling that the real unifying element is the flavor of the Kiev
School on Nonlinear Oscillations, initiated about six decades ago by Krylov and
Bogoliubov. Let us mention some of the main publications that are character-
istic of the development of this school. It started with Nicolai Mitrofanovich
Krylov (born in 1879 and educated in St. Petersburg but working in Kiev since
1922). If one looks at the list of papers published by Krylov and by Bogoliubov
and Krylov, one finds some of the same themes that are present in the book
under review, such as “Approximation of periodic solutions of differential equa-
tions”, a paper in French published in 1929 by Krylov, or “On the quasiperiodic
solutions of the equations of the nonlinear mechanics”, published in French in
1934 by Krylov and Bogoliubov.

The most famous publication of Krylov and Bogoliubov is their book Intro-
duction to nonlinear mechanics, published in Kiev in 1937. What was typical
of all these pioneering works of the Kiev School was the stress on computa-
tional aspects, on motivations, and on applications. In the sequel the main
theoretical aspects were brilliantly clarified by N. N. Bogoliubov in a rather
unknown monograph entitled On certain statistical methods in mathematical
physics (Kiev) published in 1945; it was there the “method of averaging” found
a full mathematical justification and the idea of reducing the problem by con-
sidering integral manifolds was pointed out.

The next event was the widely known book by Bogoliubov and Mitropolskii,
Asymptotic methods in the theory of nonlinear oscillations, published in Russian
in 1955, followed by a long series of books by Mitropolskii and his colleagues;
among them let us mention that by Mitropolskii and Lykova, Integral manifolds
in nonlinear mechanics (Nauka, Moscow, 1974). After discovering that the main
ideas of the “accelerated convergence” procedure of Kolmogorov, Arnold, and
Moser were already present in the work of Bogoliubov in the 1969 monograph
The methods of rapid convergence in nonlinear mechanics (Naukova Dumka,
Kiev), Yu. A. Mitropolskii and A. M. Samoilenko gave the Kiev version of this
approach. Under the direction of Mitropolskii in Kiev a large number of studies
were performed, dedicated mostly to the extension of the methods to different
classes of equations and to various applications.




