
RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 32, Number 1, January 1995

MÜNTZ SPACES AND REMEZ INEQUALITIES

PETER BORWEIN AND TAMAS ERDÉLYI

Abstract. Two relatively long-standing conjectures concerning Miintz polyno-

mials are resolved. The central tool is a bounded Remez type inequality for

non-dense Miintz spaces.

1. Introduction

Müntz's beautiful, classical theorem characterizes sequences A := {A,}^0

with

(1.1) 0 = A0<Ai <A2<---

for which the Miintz space M{A) := spanjx'1", x1', ...} is dense in C[0, 1].

Here, and in what follows, span{xA°, xA', ...} denotes the collection of fi-

nite linear combinations of the functions xA°, xx> , ... with real coefficients

and C[A] is the space of all real-valued continuous functions on A c [0, oo)

equipped with the uniform norm. Throughout this paper A := {A,}°^0 denotes

a sequence satisfying (1.1). Müntz's Theorem [9, 11, 17, 24, 27] states the

following.

Theorem.  M{A) is dense in C[0, I] if and only if YlHi IM/ = °° •

The original Miintz Theorem proved by Miintz [17] in 1914 and by Szász [24]
in 1916 and anticipated by Bernstein [3] was only for sequences of exponents

tending to infinity. The point 0 is special in the study of Miintz spaces. Even

replacing [0, 1] by an interval [a, b] c [0, oo) in Müntz's Theorem is a non-

trivial issue. This is, in large measure, due to Clarkson and Erdös [12] and

Schwartz [22] whose works include the result that if Yllti 1M¡ < °° > then every

function belonging to the uniform closure of M{A) on [a, b] can be extended

analytically throughout the region {zeC\(-oo,0]:|z|<6}.
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There are many variations and generalizations of Müntz's Theorem [1, 4, 5,

6, 7, 8, 9, 16, 18, 22, 23, 25, 26]. There are also still many open problems.
In Section 3 of this paper we show that the interval [0,1] in Müntz's The-

orem can be replaced by an arbitrary compact set A c [0, oo) of positive

Lebesgue measure. That is, if A c [0, oo) is a compact set of positive Lebesgue

measure, then M {A) is dense in C[A] if and only if Yl'üi ^ßi — °° •

If A contains an interval, then this follows from the already-mentioned re-

sults of Clarkson, Erdös, and Schwartz. However, their results and methods

cannot handle the case when, for example, ^ c [0, 1] is a Cantor type set of

positive measure.

In the case that Yllli 1M¿ < °° > analyticity properties of the functions be-

longing to the uniform closure of M {A) on A are also established.

Speculations about the above extension of Müntz's Theorem are probably as

old as Müntz's Theorem itself.

Somorjai [23] and Bak and Newman [2, 19] proved that

R{A):={p/q:p,qeM{A)}

is always dense in C[0, 1 ]. This surprising result says that while the set M {A)

of Müntz polynomials may be far from dense, the set R{A) of Müntz rationals

is always dense in C[0, 1] no matter what the underlying sequence A. In light

of this result, in 1978 Newman [19, p. 50] raised "the very sane, if very prosaic

question": Are the functions

Hie0'.;*'2) '        fl/,;eR,    ", eN,
j=l  \i=0 J

dense in C[0, 1] for some fixed k > 2? In other words, does the "extra

multiplication" have the same power that the "extra division" has in the Bak-

Newman-Somorjai result? Newman speculated that it did not.

Denote the set of the above products by Hk . Since every natural number is

the sum of four squares, H4 contains all the monomials x",n = 0,l,2,....

However, Hk is not a linear space, so Müntz's Theorem itself cannot be applied.

Section 4 of this paper deals with products of Müntz spaces and answers the

above question of Newman in the negative. For

(1.2)
A/:=R../}£o.        0 = A0,j><h,j <hj<--- ,       j=l,2,...,k,

we define the sets

M{A{ ,A2,... ,Ak):=lp = f[pj : Pj e M{Aj) 1 .

A bounded Remez type inequality is established for M{A\, A2, ... , Ak) when-
ever

(1.3) Et-<00>        .7 = 1,2,...,*.

This obviously implies that if (1.2) and (1.3) hold and A C [0, oo) is a compact
set of positive Lebesgue measure, then M{A¡, A2, ... , Ak) is not dense in

C[A].  In particular, H4 is not dense in C[0, 1], which answers Newman's
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problem negatively. In addition, assuming (1.2) and (1.3), our methods give an

"almost characterization" of the uniform closure of M{A\, A2, ... , Ak) on A
in terms of analyticity properties.

2. Bounded Remez type inequality for M {A)

Let &>n denote the set of all algebraic polynomials of degree at most n with

real coefficients. For a fixed s e {0, 1), let

&nis) := {p e &n : m{{x e [0, 1] : \p{x)\ < 1}) > s},

where m{-) denotes linear Lebesgue measure. The classical Remez inequality

concerns the problem of bounding the uniform norm of a polynomial p e ¿Pn

on [0,1] given that its modulus is bounded by 1 on a subset of [0,1] of

Lebesgue measure at least 5. That is, how large can |[p||[o,i] (the uniform

norm of p on [0, 1] ) be if p e ¿Pn{s) ? The answer is given in terms of the

Chebyshev polynomials. The extremal polynomials for the above problem are

the Chebyshev polynomials ±Tn{x) := ± cos(« arceos h{x)), where h is a linear

function which scales [0, s] or [1 - s, 1] onto [-1, 1]. For various proofs,

extensions, and applications see [13, 14, 15, 20, 21].

We announce the following bounded Remez type inequality for M {A) whose

proof, which is quite difficult, will appear elsewhere.

Theorem 2.1. Suppose ¿ZHi IM/ < °° • Let s > 0. Then there exists a constant

c depending only on A := {A,-}~0 and s {and not on g , A, or the "length" of
p) so that

\\p\\lo,e]<c\\p\\A

for every p e M {A) :— spani^0, xx>, ...} and for every set A c [q , 1] of
Lebesgue measure at least s.

In the above theorem and throughout the paper, \\p\\A := supx€/1 \p{x)\.
One might note that the existence of such a bounded Remez type inequal-

ity for a Müntz space M {A) is equivalent to the non-denseness of M (A) in

C[0, 1]. We believe that this result should be a basic tool for dealing with prob-

lems about Müntz spaces. In this paper we demonstrate the power of Theorem

2.1 by settling two long-standing conjectures as fairly straightforward corrolar-
ies.

3. Müntz's Theorem on compact sets of positive measure

Theorem 3.1. Suppose X^i 1/^/ < oo and A c [0, oo) ¿s a set of positive

Lebesgue measure. Then M{A) is not dense in C[A]. Moreover, if the gap
condition

(3.1) inf{A/+i -A,■■: i e N} >0

holds, then every function f e C[A] from the uniform closure of M {A) on A
is of the form

oo

/M = H«***.      x eAn[0,rA),
1=0

where rA := sup{x e [0, oo) : m{A n (x, oo)) > 0} is the essential supremum of

A . If the gap condition (3.1) does not hold, then every function f e C[A] from
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the uniform closure of M {A) on A can still be extended analytically throughout

the region {z e C \ (-00, 0] : \z\ < rA}.

Proof. Suppose / e C[A], and suppose there is a sequence {p,}^j c M{A)
which converges to / uniformly on A. Then the sequence {p/}/2i is uniformly

Cauchy on A. Therefore, Theorem 2.1 and the definition of rA yield that

O7;}ii is uniformly Cauchy on every closed subinterval of [0, rA). If the gap

condition (3.1) holds, then the characterization of the uniform closure of M {A)

on A follows from the results of Clarkson and Erdös [12]. If the gap condition

(3.1) does not hold, then results of Schwartz [22] yield the theorem.   D

Theorem 3.2. Suppose A c [0, 00) is a compact set of positive Lebesgue mea-

sure. Then M {A) is dense in C[A] if and only if J2h=i IM/ = °° ■

Proof. Suppose J2°l{ 1/A,- = 00. Let / e C[A]. By Tietze's Extension The-

orem there exists an / € C[0, 1] so that f{x) = f{x) for every x e A. By

Müntz's Theorem there is a sequence {p¡}^x c M {A) which converges to /

uniformly on [0, 1 ], hence on A . This finishes the trivial part of the theorem.

Suppose now that Yl¡*Li IM/ < °° • Then Theorem 3.1 yields that M {A) is
not dense in C[A].   D

4. Products of Müntz spaces

We prove the following Remez type inequality for M{A\, A2, ... , Ak).

Theorem 4.1. Suppose (1.2) and (1.3) hold. Let s > 0. Then there exists a

constant c depending only on A\, A2, ... , Ak, s, and k {and not on g or
A) so that

\\p\\[0,e] <c\\p\\A

for every p e M{A2, A2, ... , Ak) and for every set A c [g , 1] of Lebesgue
measure at least s.

Proof. Theorem 2.1 implies that there exist constants a¡ > 0 depending only

on Ai, A2, ... , Ak , s, and k so that

m{{x G [y, 1] : \p{x)\ > ajl\p{y)\}) >l-y-±

for every p e M{A}) and y e [0, 1 - s]. Now let p e M{AX, A2, ... , Ak),

that is, p = n*=i Pj with pj e M{Aj). Then, for every ye[0, 1 - s],

m{{x e[y,l]: \p{x)\ > {aia2 ■■■ak)-l\p{y)\})

> m (nk=l {x € [y, 1] : \Pj{x)\ > aJl\Pj{y)\})

>-'-y-km=l-y-S2<

Hence y e [0, inf^], A C [0, 1], and m{A) > s imply

m{{x € A : \p{x)\ > {axa2 ■ ■ ■ ak)~l\p{y)\}) > S- > 0,

and the theorem follows with c = a\a.2 ■ ■ ■ ak .    D

Theorem 4.1 immediately solves Newman's problem [19].

Corollary 4.2. Suppose (1.2) and (1.3) hold and A c [0, 1] is a set of positive
Lebesgue measure. Then M{A¡, A2, ... , Ak) is not dense in C[A].
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