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Mathematical logic began as the general study of mathematical reasoning.
Several specializations have developed: recursion theory studies abstract com-

putation; set theory studies the foundations of mathematics as formalized in

Zermelo-Fraenkel set theory; proof theory studies systems of formal proof;

model theory, says Hodges, is the study of the construction and classification of

structures within specified classes of structures. Despite this somewhat jargon-

laden definition, model theory is the part of logic that over the last half century

has developed the deepest contacts with core mathematics. I would modify

Hodges's definition to emphasize a central concern of model theory: the discus-
sion of classes of classes of structures. In this review we consider several devel-

opments, most covered by Hodges, to clarify the distinction between studying
a single structure, a class of structures (a theory), or a class of theories. We will
relate these model-theoretic concepts to specific developments in the theory of
fields.

A signature L is a collection of relation and function symbols. A structure

for that signature (L-structure) is a set with an interpretation for each of those

symbols. Consider a signature L with symbols: < , +, •. The ordered field of

real numbers becomes an L-structure when these symbols are given their natural

interpretations. A language specifies certain L-sentences built up from the sym-

bols in a signature L. A number of languages can be built up based on the same

signature. The first-order language is the least set of formulas containing the
atomic L-formulas (e.g., x < y) and closed under the Boolean operations and

quantification over individuals. Formulas in which each variable is bound by a

quantifier are called L-sentences. More expressive languages allow closure un-

der infinite conjunctions (LK>Û)), quantifiers over subsets (second-order logic),

etc. An L-structure M is a model of an L-sentence if the sentence is true in

M. Thus the class of real closed fields is axiomatizable in the first-order lan-
guage associated with L, while the reals are axiomatizable in the second-order
language associated with L.
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Although we focus most of our attention on the first-order case, results about
individual structures often involve more expressive languages. A specimen result

of this sort asserts that an element m of a countable structure M is fixed by

every automorphism of M that fixes X ç M if and only if m is LW| t w-

definable with parameters from X (i.e., there is a formula (¡>{v , tí)) of LWl<ü)

and elements x from X such that m is the only solution of (f>(v , x)).

In a given context a signature L and a language (say, first order) are fixed.

A theory T is a collection of L-sentences. If all models of T satisfy exactly

the same L-sentences (are elementarily equivalent), T is said to be complete.

We consider two examples of the utility of extending our focus from a single

structure to the class of all structures elementarily equivalent to M. There

are many such models: the Löwenheim-Skolem theorem asserts: if a first-order

theory has an infinite model, it has a model in each infinite cardinality.

Tarski [17] characterized the first-order definable subsets of the ordered field
of real numbers as the Boolean algebra generated by intervals. This is a quan-

tifier elimination result, as (when suitably generalized to «-space) it shows that

every first-order definable relation is in fact definable without quantifiers (by

a Boolean combination of equalities and inequalities). In fact, this elimina-

tion can be proved for all real closed fields and leads to the conclusion that
the theory of real closed fields is complete. A corollary is the (only known?)

proof that every associative division ring over an arbitrary real closed field has
dimension at most 8. This theorem is proved by analytical means for the reals
and transferred to fields where such analysis is impossible.

The compactness theorem asserts that if every finite subset of a set X of

sentences has a model, then so does Z. This theorem allows one to realize

"ideal" elements in closely related structures and provides us with a concrete

notion of the meaning of a generic point in algebraic geometry. To understand
this, we need the notion of a type. Let M be a structure, and let A ç M and

m e M. The type realized by m over A in M is the collection of formulas

with parameters from A satisfied by m in M. For every set A contained

in a model M and every n , let S „(A) denote the collection of types over A

(the nth Stone space of A). If A is embedded in a sufficiently nice "universal
domain", Jf, all realizations in Jt of a type p e S„(A) are conjugate by
automorphisms of Jf fixing A .

Now, let k be an algebraically closed field. A variety V can be viewed

syntactically as a set definable by a conjunction of equations. A type p e S„(k)

is generic for V if the formula defining V is in p and every formula in p

has dimension at least that of V either in the sense of algebraic geometry or,
equivalently, in the sense of Morley (see below). A generic point for a variety
V defined over the algebraically closed field k is a realization in an elementary

extension k' of k of a generic type for V. That is, a generic point is a point
like any other—but in a suitably chosen elementary extension of the ground
field.

Work on particular theories naturally tends to focus on theories with mathe-
matical significance. Some of the more important recent work includes Wilkie's

[18] proof of the model completeness of the real field with exponentiation and
the work of Macintyre, van den Dries and Denef on the p-adics [12, 9]. By

replacing varieties with all definable sets, van den Dries and Denef are able to
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substitute an argument using induction on the logical complexity of formulas

for one using resolution of singularities.
The core of model theory investigates the common properties of members

of a class of theories. A natural starting place is to sort classes of theories
according to the syntactic nature of the sentences defining the theory. Ideally,

one proves equivalences between semantic and syntactic characterizations of a

class. Thus, the Chang-Los-Suszkó theorem says that a theory T is axiomatized
by universal-existential sentences if and only if the class of models of T is

closed under unions of chains.

The study of classes of theories defined by more structural rather than syn-

tactic properties leads to deeper model-theoretic results. By the Löwenheim-

Skolem theorem it is impossible for a first-order theory to specify models more

precisely than up to cardinality. The algebraically closed fields of any fixed
characteristic provide an example of a first-order theory that is categorical (has
only one model up to isomorphism) in each uncountable cardinality. Los [11]

conjectured that this is a general phenomenon: a theory categorical in one un-
countable cardinal k is categorical in all uncountable cardinalities.

Morley [ 14] made the pivotal steps toward a sophisticated analysis of com-

plete first-order theories in his positive solution of the Los conjecture. Among
the numerous crucial ideas he introduced in this paper, we consider his analysis

of Stone spaces. If M is an uncountable model of an Ni -categorical theory
T, the Morley rank of p e Si (M) is just the Cantor-Bendixson rank of p as

a member of this Stone space. Morley uses this rank to provide an inductive

procedure for analyzing the complexity of models. In current terminology, a

theory T is called tc-stable if |Si(Af)| = k for every model of T with cardi-

nality k . Every type has a Morley rank just if T is co-stable. Morley showed

that every Nj -categorical theory is co-stable.
In retrospect, Morley's paper demonstrates the advantage of investigating

complete first-order theories that satisfy additional restrictive conditions (e.g.,
co-stability). But this lesson was not learned immediately. The attempt to con-

sider such ideas as two cardinal models, saturated and special models, and

omitting types for arbitrary theories led to a set-theoretic morass. Shelah seized

on the notion of classifying theories by properties of associated Stone Spaces
to avoid the set-theoretic independence questions that arose when these con-

structions were considered for arbitrary theories. He introduced a classification

of all first-order theories in terms of the cardinals k in which T is stable. In

particular, T is stable if T is stable in some infinite cardinal. He generalized
from the Los conjecture to the more general problem of computing I(T, X),

the number of models of a first-order theory T that have cardinality X. In a

long project Shelah used his classification to determine the spectrum functions
I(T, X) of first-order theories. The spirit of this program is more fully explained
in [15, 2, 5]. Among the surprising but decisive side-effects of this project was
the discovery that methods invented to discuss models of large cardinality or

in signatures with large cardinality had profound consequences for countable

models of countable theories. (This observation complements Shelah's remark
[16] reported on page 339 of Hodges's book.)

One key aspect of the Shelah program is the development in the general con-

text of stable theories of a notion of dependence similar to algebraic dependence

in vector spaces or fields. Hodges chooses to expound this notion most fully in
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the much more restrictive context of almost strongly minimal theories. A de-
finable set D is strongly minimal if every definable subset of D is (uniformly)
finite or cofinite. There is a natural combinatorial geometry on the algebraically

closed subsets of D. Around 1970 Baldwin and Lachlan [3] proved that an Ni-

categorical theory was controlled by a strongly minimal set; this control is most

direct in the case of an almost strongly minimal theory [1]. At about the same

time, Zil'ber began to develop the importance of the geometric structure of the
strongly minimal set in determining the properties of the theory. He isolated

the crucial notion of a modular (essentially, the lattice of closed sets is modular)
strongly minimal set and characterized strongly minimal sets with locally finite
modular geometries. This characterization is part of his proof that no first-order
theory with only infinite models that is categorical in every infinite power can be

finitely axiomatizable [19]. Zil'ber conjectured that every nonmodular strongly

minimal set is "biinterpretable" with an algebraically closed field. This conjec-

ture reduces the study of arbitrary interesting uncountably categorical theories
to algebraic geometry. We will return to this situation after addressing the book

at hand.
The last book entitled Model theory was written by Chang and Keisler [4]

in 1973. Two major topics in Chang-Keisler are largely omitted in Hodges:

ultraproducts and the model theory of set theory. Each of these areas reflect a

kind of interaction with set theory which is no longer central to model theory.

Both focus on models of a particular theory.
In the late 1960s the study of infinitary logics was a flourishing field. Chang

and Keisler deliberately excluded it from their text; Keisler wrote another book

on that subject [10]. Hodges views model theory as a whole with first-order
logic as only one case. Thus, the compactness theorem is delayed until page

264, emphasizing that, for example, the analysis of automorphism groups of
structures is not dependent on the restriction to the first-order situation.

Chang and Keisler's book was carefully organized as a graduate text. In con-

trast, Hodges's book should be viewed more as an encyclopedia than a text.

It surveys most of contemporary model theory: not only the classical results

from before 1960, but most of the exciting developments of the last thirty years

are covered. Listing such topics as the small index property, co-categoricity,
back and forth techniques, quantifier elimination, stable groups, Horn theories,

Ehrenhfeucht-Mostowski models, and cohomology of expansions only scratches

the surface. Morley's theorem is one of a number of subjects discussed at

the end of Chang-Keisler. The study of classes of theories, defined mainly by
stability considerations, plays a major role in Hodges's book. This approach

enables one to distinguish properly model-theoretic notions which are reason-

ably robust modulo set theory from problems that are inherently set-theoretical.

Hodges presents Shelah's proof that an unstable theory has the maximal pos-
sible number of models in each regular uncountable cardinal. The restriction

to regular cardinals exemplifies this distinction. The proof that there are 2X

models of power X for arbitrary X [16] involves both model-theoretic ideas

and combinatorial properties of X. For more exotic X, both more set theory
and more model theory are required, but the regular cardinal case contains the
essential ideas.

The book is valuable to all mathematicians with some model-theoretic back-
ground because Hodges's organization and informal style bring out unexpected
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connections and unique insights on many topics. I disagree with one of these

remarks. Hodges objects to the distinction between h for syntactic consequence
and t= for semantic consequence and asserts that most model theorists use h
for semantic consequence. A cursory survey has found no one else has adopted

this convention.
An example of Hodges's novel organization is the proof early in the book of

the result of Zil'ber and Hrushovski that the existence of certain simple geomet-

ric configurations in a structure imply that an infinite group can be interpreted in
the structure. The idea of this proof can be expressed at several levels. Hodges

takes the restrictive assumption that the structure is almost strongly minimal to

avoid certain complications and states the result in terms of type definability.

By strengthening the hypotheses and weakening the conclusion (from the most

general result), he focuses on the crux of the proof.
Some work that appeared too late for inclusion in Hodges's book completes

our story. Hrushovski used the result described in the last paragraph to derive
abstract model-theoretic results from concrete algebraic facts. But he also [6]

refuted Zil'ber's conjecture limiting the strongly minimal sets to those derived

from standard algebra.
Model theory has provided a textbook example of the benefits gained from

abstracting from a situation, working our the consequences of the abstraction,

and returning again to the specific situation. Morley's theorem seizes on a

salient aspect of algebraic geometry: the categoricity of the field of complex
numbers. The generalizations to all first-order theories categorical in an un-

countable power and then to classes of theories defined by stability considera-
tions produced a powerful machinery free from the specifics of the situation.

The development of stability theory allowed a uniform treatment of such dis-
parate structures as differentially closed fields and separably closed fields. To

regain the Zil'ber conjecture, Hrushovski and Zil'ber developed the theory of

Zariski structures [8]. This notion of a restricted type of co-stable theory gives
a model-theoretic axiomatization of exactly the dimension theory that arises
in algebraic geometry. It specializes the generality of general stability theory

while giving a structural, rather than syntactic, analog for the notion of vari-

ety. The fruitfulness of this approach has been seen in the solution of both
model-theoretic and algebraic problems: calculation of the number of count-
able models of the theory of differentially closed fields of characteristic 0 [7]
and Hrushovski's work on the Mordell-Lang conjecture in both characteristics

0 and p. An essential ingredient in the characteristic p case is Messmer's
characterization [13] of definable groups over separably closed fields: a strictly
stable structure.

Hodges's book does not carry the story quite this far. However, it expounds

many of the crucial ideas used in this analysis and provides a beautiful panorama
of most of the important results in model theory.
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The 1950s saw many beautiful developments concerning domains with very
general boundaries and functions of bounded variation in n variables, for ex-
ample, the Gauss-Green theorems of Fédérer [Fl] and DeGiorgi [DG1], the

co-area formula of Fleming-Rishel [F-R], and DeGiorgi's theory [DG2] of sets

of finite and least perimeter. Analytic and geometric properties of functions
of bounded variation have become important and basic to many problems in
analysis, partial differential equations, and applied mathematics.
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