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AT INTEGRAL POINTS AND FLOWS ON SPACES OF LATTICES

ARMAND BOREL

This mostly expository paper centers on recently proved conjectures in two

areas:
A) A conjecture of A. Oppenheim on the values of real indefinite quadratic

forms at integral points.
B) Conjectures of Dani, Raghunathan, and Margulis on closures of orbits in

spaces of lattices such as SL„(R)/SL„(Z).
At first sight, A) belongs to analytic number theory and B) belongs to ergodic

and Lie theory, and they seem to be quite unrelated. They are discussed together

here because of a very interesting connection between the two pointed out by

M. S. Raghunathan, namely, a special case of B) yields a proof of A).
The first main goal of this talk is to describe the Oppenheim conjecture and

various refinements and to derive them from one statement about closures of

orbits in the space of unimodular lattices in R3 (see Proposition 2 in §2.3). In

§§3 and 4 we put this statement in context and describe more general conjectures

and results on orbit closures and invariant probability measures on quotients

of Lie groups by discrete subgroups. §5 gives some brief comments on the

proofs and further developments. §§6, 7, and 8 are devoted to the so-called

S-arithmetic setting, where we consider products of real and p-adic groups. §6

is concerned with a generalized Oppenheim conjecture; §7 with a generalization

of the orbit closure theorem proved by M. Ratner [R8]; and §8 with applications

to quadratic forms. Since the subject matter of that last section has not been
so far discussed elsewhere, we take this opportunity to present proofs, obtained

jointly with G. Prasad. Finally, §9 gives the proof of a lemma on symmetric

simple Lie algebras, a special case of which is used in §8.

I am glad to thank M. Ratner and G. Prasad for a number of remarks on,

and corrections to, a preliminary version of this paper, thanks to which many

typos and inaccuracies have been eliminated.

I. Values of indefinite quadratic forms

1.   The Oppenheim conjecture.

1.1. In the sequel F denotes a non-degenerate quadratic form on R" which is

indefinite, i.e. F(x) = 0 for some x € R" - {0} or equivalently F(Rn) = R.

It may be written

*•(*)=   £   fu**      Utj = fjie*,áet{fij)¿0).
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Unless otherwise stated we assume n ^ 3 . We are concerned with F(Z").

Definition. F is said to be rational if F(x)/F(y) € Q whenever x, y e Q"
and F(y) ^ 0, and irrational otherwise.

F is rational if and only if there exists c e R* such that F = c.F0 , where

F o has rational coefficients (with respect to a basis of Q" ). We may then also

arrange F0 to have integral coefficients. Therefore

F(Z») = c.F0(Zn) c c.Z

is discrete. The Oppenheim conjecture states that, conversely, if F is irrational,

then F(Z") is not discrete around the origin. More precisely, consider the two
conditions:

(i)   F is irrational.

(ii) Given e > 0, there exists x e Zn such that 0 < \F(x)\ < e .

We just saw that (ii) => (i). The Oppenheim conjecture is that (i) => (ii).

1.2. Historically, this is a bit of an oversimplification. In 1929, A. Oppenheim

stated that the following is very likely to be true: if F is irrational and n ^ 5,

then \F(x)\ takes arbitrary small values on Z" [OÍ, 02]. Formally, this may
be written

(ii)'   Given e > 0, there exists x € Z" such that \F(x)\ < e ,

and is automatically satisfied if F "represents zero rationally"; i.e. if there

exists x € Q" - {0}, hence also x e Z" - {0}, such that F{x) = 0. But

Oppenheim had clearly (ii) in mind, and he made it explicit in [03], still for n ^

5 , though; but [04, 05] show that he was wondering whether it might be true

for n ^ 3 already (it was well known to be false for n = 2 ; an example is given

in (1.4)). Then, later, the conjecture (i) =*• (ii) ' became erroneously known

as "Davenport's conjecture", though Davenport referred to Oppenheim. The

implication (i) => (ii) ' is obviously equivalent to the Oppenheim conjecture

(i) => (ii) for forms not representing zero rationally. The bound n ^ 5 had

been suggested to A. Oppenheim by a theorem of A. Meyer according to which

a rational indefinite quadratic form in n ^ 5 variables always represents zero

rationally (see e.g. [S, IV, §3]). He felt that, in the irrational case, it should take
values close to zero on Z" .

1.3. The condition (ii) leaves open the possibility that F(Z") accumulates to
zero only on one side, but Oppenheim showed in [03] that this cannot happen

for n ^ 3, our standing assumption (but that it can for n = 2 ). It then follows
by a very elementary argument that (ii) implies:

(iii) F(Z") is dense in R,

so that the conjectural dichotomy was in fact

F rational <s> F(Zn)  discrete;

F irrational <$ F(Z")  dense.

1.4. To conclude this section, we give a simple counterexample for n = 2,
borrowed from [G].

Let F(x, y) = y2 - 62.x2, where 6 is quadratic, irrational > 0 ,• and 62 is
irrational. The form F is irrational. As is well known, there exists c > 0 such
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that

(1) \d-y/x\^c.x~2       {x, yeZ, x¿0).

For x ^ 0, we can write

(2) F(x, y) = x2(y/x + d)(y/x-d).

We have to prove that \F(x, y)\ has a strictly positive lower bound for x, y &

Z not both zero. This is clear if one of them is equal to zero. So let x, y ^ 0.

We may assume them to be > 0. Then \6 + y/x\ ^ 6 . Together with (1) and

(2), this yields \F(x, y)\ Zed.

2.   Results.

2.1. The first partial results on the Oppenheim conjecture were obtained in the

framework of analytic number theory. It was shown to be true for diagonal

forms in n ^ 9 variables [C], in n ^ 5 variables [DH] and for general forms in

n ^ 21 variables [DR]. Oppenheim himself proved it when F represents zero

rationally, for n ^ 5 in [04] and for n = 4 in [05]. In both papers he stated

his belief it should be true for n = 3, though it was obviously false for n = 2 .

It is easy to see that if F is irrational, then there exists a three-dimensional

subspace V c Q" such that the restriction of F to V ®q R is non-degenerate,

indefinite and irrational. Therefore it suffices to prove the Oppenheim conjec-

ture for n = 3.

2.2. Around 1980, M. S. Raghunathan made a conjecture on closures of orbits

in spaces of lattices (see 3.2). He noticed further that a very special case,

namely Proposition 1 below, would readily imply the "Davenport conjecture".

G. A. Margulis, following this strategy, then proved Proposition 1 and deduced

from it that (i) => (ii)' [Ml, M2]. When informed (by the author, October
1987) of the fact that the Oppenheim conjecture was a slightly stronger one, he

quickly completed his argument and established:

Theorem 1 (Margulis [M3]). The Oppenheim conjecture is true.

2.3. The statement on closures of orbits proved and used by Margulis to show

that (i) =» (ii) ' is:

Proposition 1. Let n = 3. Then any relatively compact orbit of SO{F) on

Q3 = SL3(R)/SL3(Z) is compact.

It is of course equivalent to the same assertion for the topological identity

component SO{F)° of SO(F) (which has index two).

A slight extension of it (see Theorem 1 ' in [M3]) allowed him to establish the

full Oppenheim conjecture. Rather than explaining how, I shall sketch a deriva-

tion of this conjecture from the following assertion, stronger than Proposition 1

(but still a very special case of the topological conjecture; see §3), proved shortly

afterwards for this purpose by S. G. Dani and G. A. Margulis [DM1]:

Proposition 2. We keep the previous notation and assumptions. Then any orbit

of SO(F)° on Q3 either is closed and carries an S0(F)0-invariant probability
measure or is dense.

(In this paper, all measures are Borel measures.)
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They deduced directly from it that (i) implies not only (iii), but also that

the set of values of F on the primitive vectors in Z" is dense [DM1]. Recall

that x € Z" , x 7^ 0, is primitive if it is not properly divisible in Z" . The set
of primitive vectors is SL„(Z).ei , where e\ is the first canonical basis vector.

This is a sharpening of (iii) which, as far as I know, had never been considered
before.

Note that, since Q3 is not compact, Proposition 2 obviously implies Propo-
sition 1.

2.4. We now sketch the proof of the Oppenheim conjecture, or rather of its
strengthening just mentioned, using Proposition 2.

We let G = SL3(R), H = SO{F)° and T = SL3(Z).
Let o be the origin in fi3, i.e. the coset T. Then by Proposition 2, H.o

is either closed with finite invariant measure or dense. Assume first it is dense.

Then its inverse image HT in G is also dense. Fix c e R. There exists

x eR", x ^ 0 such that F(x) = c. Let e\, ... , e„ be the canonical basis of

R" . There exists g e SL3(R) such that g.e\ = x. Since HT is dense in G,
we can find sequences y¡ e T and hj € H (j = 1, ... ) such that hj.y¡ —> g .
Then we have

c = F(g.ex)= lim F{hj.yj.ex)= lim  F{yj.ex);
j—>oo j—+oo

therefore c is in the closure of F(SL^(Z).e\).

Assume now that H.o is closed and supports an //-invariant probability mea-

sure. Let F0 = Hnr. Then H/T0 is homeomorphic to H.o and has therefore
finite invariant volume. By a general result, this implies that T0 is "Zariski-
dense" in H, i.e. is not contained in any algebraic subgroup. However, in this

case, it can be checked more directly. In fact, the only important property of

real algebraic groups relevant here is that they have only finitely many connected

components, in the usual topology. It suffices therefore to show that Y0 is not

contained in any closed subgroup of H having finitely many connected compo-

nents. Let M be one. Then H/M also carries an invariant probability measure

(define the measure of an open set U in H/M as equal to that of its inverse

image in H/T0 under the natural projection H/Y0 —> H/M). By a standard

fact (see e.g. [Bu], VII, §2, no. 6), this implies that M, hence also M° , is uni-

modular. Also, since H/M° is a finite covering of H/M, it carries an invariant

probability measure, too, and the same is true if we replace H by its twofold

covering SL2(R) and M° by the identity component of its inverse image there.

Being unimodular, M° is not a maximal connected solvable subgroup of H.

It is then either conjugate to the subgroup A of diagonal matrices with positive

entries or to the subgroup N of upper triangular unipotent matrices. Recall
the Iwasawa decomposition H = K.A.N, where K = SO(2). If M° = A , then
there is an ./V-equivariant diffeomorphism of H/M° onto N x K. If x e N,

x / 1, then we can find a neighborhood of 1 in N x K, the translates of which

by the powers of x are disjoint, hence H/M° has infinite invariant measure.

If M° = N, then there is similarly an ^(-equivariant diffeomorphism of H/M°

onto A x K, and we see in the same way that an invariant measure has infinite

volume. Thus, the existence of M leads to a contradiction, which shows that

TO H is Zariski-dense in H. (In both cases, it would suffice in fact to note that
H/M° is not compact, in view of a theorem of G. D. Mostow [M, Theorem
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7.1] which states that if the quotient of a connected Lie group by a closed sub-

group with finitely many connected components carries an invariant measure, it

is compact. However this result is closely related to the Zariski-density theorem

I was trying to prove directly.)

Consider the natural action of H on the space of 3 x 3 real symmetric ma-

trices. The only invariants of H are the multiples cF of F (c e R). Since
ro is Zariski-dense in H, these are also the only invariants of T0 . But invari-

ance under ro translates into a system of linear equations for the coefficients

of F, with integral coefficients. It has therefore a rational solution; i.e. cF

has rational coefficients for some c ^ 0, hence F is rational by definition.

2.5. The results of M. Ratner recalled in §3 imply that Proposition 2 is valid

for all n ^ 3, (see 3.6). As we saw, the case n = 3 suffices for the results on

quadratic forms discussed so far, but Proposition 2 for arbitrary n also yields

a stronger approximation theorem for quadratic forms. To state it, let us say

that a subset (x\, ... , xm) of Zn (m Ú n) is primitive if it is part of a basis

of Z" . If m < n , this condition is equivalent to the existence of g e SL„ (Z)

such that g.e¡ = x¡ (i = 1,... , m). Then we have [BP2, 7.9].

Theorem 2. Let c¡ 6 R (/ = 1,... , n — 1). Assume F to be irrational. Then

there exists a sequence (Xji,... , Xjn-\ ) (j = 1, 2, ...) of primitive subsets of

Z" such that

(1) lim F (Xji) = a       (j = 1,... ,n-\).
7—*oc

Proposition 2 already implies it for two values C\, C2, as was shown in

[DM1]. The proof is an easy extension of the first argument in 2.4. In fact

[BP, 7.9] is concerned more generally with the ^-arithmetic case (see §6) but

without finite places. The proof in the general S-arithmetic case will be given

in 8.4.
2.6. Propositions 1 and 2 are very special cases of the general results of

M. Ratner outlined in the next section. However, Proposition 1 had earlier

been given a comparatively elementary proof in [Ml, M3], and [DM3] provides

also an elementary proof of a theorem weaker than Proposition 2 but stronger

than those of [Ml, M3] and already sufficient to show that if F is irrational,

its set of values at primitive vectors is dense in R. The main theorems on

flows, in particular the property of "uniform distribution" (see 3.9), have led to

some quantitative refinements of the Oppenheim conjecture. We state here the

simplest one

Proposition 3. Given a, b > 0 with a < b, there exists constants r0, c > 0

such that

Card{x eZ"n Br\a ^ \F{x)\ <. b} ^ c.rn'2       (r ^ r0).

Here, Br denotes the euclidean ball in R" of radius r with center the origin.

This was proved first, independently, by S. G. Dani and S. Mozes on the one

hand and M. Ratner on the other (unpublished). A more general statement,

valid for certain compact sets of quadratic forms, is proved in [DM4]; see

Corollary on page 95.

2.7. The truth of the Oppenheim conjecture also yields a characterization of

arbitrary non-degenerate rational quadratic forms in n ^ 2 variables, as was

noted by G. Prasad and me [B]:
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Proposition 4. Let n ^ 2 and E be a non-degenerate quadratic form on R".

Then E is irrational if and only, given e > 0, there exists x, y e Z" such that

(1) 0<\E(x)-E{y)\<e.

This follows by applying Theorem 1 to E ® -E on R2" . In fact, in view

of 2.4, we may also find primitive vectors x, y satisfying (1). Let now E be

positive non-degenerate. Then E(Zn) is discrete in R, but one can still ask

questions about the difference between two consecutive values. ( 1 ) shows that

the lower bound of the non-zero differences \F(x) - F(y)\ is zero. This is a
small step towards a conjecture made by D. J. Lewis [L], namely: given e > 0,

there exists R(e) > 0 such that if the norm of x is ^ R(e), then there exists

y e Z" so that (1) is satisfied. In other words, if we go far enough, these

successive differences are uniformly bounded and tend to zero.

II. Flows on spaces of lattices

In this part, G is a connected Lie group and Y is a discrete subgroup which,

unless otherwise stated, has finite invariant covolume; i.e. Q = G/T carries a

G-invariant probability measure, and H is a closed subgroup of G.

If L is a Lie group, L° denotes the connected component of the identity in

L. If L is a group operating on a space X, and x € X, then Lx is the isotropy

group of x, i.e. the subgroup of all elements of L leaving x fixed.

We recall that the assumption on D. forces G to be unimodular. The orbits

of H on Q define a foliation. We are concerned with the closures of the leaves

and the supports of //-invariant ergodic probability measures for certain classes
of subgroups H.

The most important case here is the one where

(MC) G = SL„(R), T = SL„(Z) and H = S0(F)0 ,

to be referred to as our main special case (MC). Then Q. = G/T may be iden-

tified with the space of unimodular lattices in R" .

3.   The topological conjecture.

3.1. The prototype here is the horocycle flow on a Riemann surface of finite
area. Let then G = PSL2(R) and X be the upper half-plane. Assume, to avoid

ramification, that Y is torsion free. Then X/Y is a compact Riemann surface

or the complement of finitely many points in one, and G/Y may be identified

to the unit tangent bundle of X/Y. Take for H the group of matrices

(o  J)      <ceR>-

Then the orbits of H in G/Y are the orbits of the horocycle flow. By results

of Hedlund [H] any orbit of H in G/Y is either compact or dense, and the
former does not occur if G/Y is compact.

In [D2], S. G. Dani states a far-reaching conjectural generalization of the
previous theorem, proposed by M. S. Raghunathan (Conjecture II, p. 358).
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3.2. Conjecture (M.S. Raghunathan). Assume G to be reductive (as a Lie group,

i.e. g reductive). Let H be an Ad-unipotent (see below) one-parameter subgroup

of G and x G Q. Then there exists a connected closed subgroup L of G

containing H such that H.x = L.x.

In [Ml, M3], Margulis extended the conjecture to the case where G is a

connected Lie group and H is a subgroup generated by elements which are

Ad-unipotent in G.

An element g G G is Ad-unipotent if its image Ad g in the adjoint repre-

sentation of G in its Lie algebra g is unipotent (all eigenvalues equal to one).

Similarly, y € g is ad-nilpotent if ad y is a nilpotent endomorphism of g. If

G is semi-simple, linear, then g G G is Ad-unipotent if it is either unipotent as
a matrix or central in G, and y G g is ad-nilpotent if and only if it is a nilpotent

matrix. If y g g, then the one-parameter subgroup exp R.y is Ad-unipotent
(i.e. consists of Ad-unipotent elements) if and only if y is ad-nilpotent.

Various special cases of this conjecture were established, notably for horo-

spherical subgroups of reductive groups [D3], until M. Ratner proved it in full

generality or, rather, obtained a stronger conclusion under more general assump-

tions:

3.3. Theorem 3 (M. Ratner [R4]). Let H° be the identity component of H.

Assume that H/H° is finitely generated, H° is generated by Ad-unipotent el-

ements and each coset h.H" (h g H) contains an Ad-unipotent element. Let

x G fi. Then there exists a closed subgroup L of G containing H such that

H.x — L.x and L.x supports a L-invariant probability measure ergodic for the

action of H.

Remark. The subgroup L is not necessarily unique. For instance, a bigger

closed subgroup L' of the same dimension, such that L'/(L'r\Gx) = L/(LnGx),

would also do. However, the Lie algebra I of L is uniquely determined: the

differential pt\ at 1 of the map g i-> g.x is an isomorphism of g onto the

tangent space to Q at x, and t is the subspace of g mapped by ß\ onto the

tangent space to H.x at x (which is well defined, since H.x is a submanifold

by the theorem). Therefore L°.H is the smallest possible choice for L and is

unique. It will be denoted L(x, //). If H is connected, then L(x, //) is the

only connected, subgroup satisfying the conclusion of the theorem.

This normalization is introduced in [R3, p. 546].

As an obvious consequence of the above, we have the

3.4. Corollary. Assume that H is connected and maximal among proper closed

connected subgroups of G. Then any orbit of H in Q is either closed and

supports an H-invariant probability measure or dense. In particular, if Q. is not

compact, a relatively compact orbit is closed and supports an invariant probability
measure.

3.5. The main point in [R4] is to show 3.3 for H connected, one-dimensional,

in which case Ratner proves a stronger result (see 3.9), and the following com-
plement:

(*) For a given x e Q, the set of subgroups L(x, H) occurring in 3.3,

when H runs through all the connected closed Ad-unipotent one-dimensional
subgroups, is countable.
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3.6. In this section we consider our main special case (MC). Since F is in-

definite and n ^ 3, the group H is generated by connected one-dimensional

unipotent subgroups. Moreover SO(F) is the fixed point set of an involutive

automorphism of G ; therefore, as is well known and easy to prove, H is max-

imal among proper closed connected subgroups, so that 3.4 holds and yields in

particular Proposition 2 in any dimension n ^ 3 .

We now give some indications of how to prove (*) and reduce the proof of

3.3 for connected H 's to one-dimensional ones, in the case under consideration.

We note first (this is completely general) that if 3.3 and 3.5 are true for H

and x, then they also hold for g.H.g~x and g.x(g G G). We may therefore
assume x to be the origin o of ii.

(a) If L.o is closed and carries an invariant probability measure, then L n Y

is of finite covolume in L. This implies, rather easily, that L is defined over

Q (see Proposition 1.1 in [BP2]). However SL„(R) contains only countably

many real algebraic subgroups defined over Q, whence (*).

(b) We now assume 3.3 to be true for all one-dimensional connected Ad-
unipotent subgroups of H. We want to prove 3.3 for H.

Let JV be the variety of nilpotent elements in the Lie algebra f) of H.

For y G jy, we let Uy denote the unipotent (or, equivalently, Ad-unipotent)
one-dimensional subgroup exp R.y .

yV is an algebraic variety, invariant under Ad H. It is a finite union of

irreducible subvarieties V¡ (j G /). Since yT is invariant under Ad H and H

is connected, H leaves each V¡ invariant, and the subgroup M¡ generated by

the subgroups Uy (ye Vf) is normal in H. We claim that M¡ = H for some

i e I. This is obviously the case for any i if H is simple. The group H is

simple except when n = 4 and F has signature (2, 2). Then h is the direct

sum of two copies of the Lie algebra of SL2(R). In that case, we may take for

Vj the Zariski closure of the orbit of any element y e/ whose projections on
the two factors are not zero.

For y g JV, let Ly be the closed subgroup such that Ly.o is the closure of

Uy.o . Let S? be the set of the subgroups Ly . For L e S? , let Ml be the set
of y G Vj such that Ly.o c L.o . It is obviously closed. Since ¿¿f is countable,

there exists at least one L such that Ml contains a non-empty open subset

of V¡. Choose one such L of smallest possible dimension. Then let Y be a

non-empty open subset of U¡ such that Uy.o c L.o for y G Y. Let R be the
subgroup generated by the groups Uy (y G Y). Then any r g R leaves L.o

stable, hence R c L and R.o c L.o. Let t be the Lie algebra of R. Then
r n Vj is an algebraic subset which contains a non-empty open subset of V¡,

hence is equal to V¡. Therefore R- H and L.o is the closure of H.o .

3.7. Remarks, (i) The argument in (a) is valid if G is a linear algebraic group
defined over Q and Y an arithmetic subgroup.

(ii) The proof in (b) is valid without change in the general case, once the

existence of V¡ is proved. It can be easily deduced from the fact that H is the

semi-direct product of a normal nilpotent subgroup, all of whose elements are

Ad-unipotent, and of a semisimple group without compact factors. For another
argument, see [R4].

3.8. The crucial difference between the case  n - 2, where the Oppenheim
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conjecture is false, and n ¿; 3 lies in the fact that SO(F)° is generated by

unipotent elements for n ^ 3 but does not contain any (except 1 ) for n = 2.

In fact, in that last case, the flow defined by H is the geodesic flow, and it

is well known that its orbits may be neither dense nor closed and may have

closures which are not manifolds.

3.9. Let H = expR.y with y G g ad-nilpotent be an Ad-unipotent one-param-

eter group. In this case, M. Ratner establishes a further property of H.x,

namely, that H.x is uniformly distributed in its closure [R4, Theorem B]:

Let L = L(x, H) be as in the remark to Theorem 3 and dvL the L-invariant

probability measure with support Lx. Then

(1) limr1 / f((e\ps.y).x)ds = I f.dvL

for every bounded continuous function f on il.

This had been proved for G = SL2(R) in [DS] and for G nilpotent in [P]. An
extension of Ratner's result to connected unipotent subgroups has been given
by N. Shah [Sh, Corollary 1.3].

4.   The measure theoretic conjecture.

We have so far emphasized the topological conjecture because of its relevance

to the proof of the Oppenheim conjecture. However, it appeared comparatively

recently in ergodic theory (motivated by the "Davenport conjecture" in fact), in

the context of activity centering on a basic problem in ergodic theory: given a

group L acting on a measure space X, classify the ergodic L-invariant prob-

ability measures. To complete the picture, I will now discuss one aspect of this

problem. From the point of view of the applications to the Oppenheim conjec-

ture, it is not strictly needed, as pointed out in 2.6. However, it is an essential
(and the hardest) step in the work of M. Ratner leading to 3.3 (and 3.9).

4.1. The starting point here is again the horocyclic flow on a Riemann surface

of finite area (see 3.1; we use the same notation). When G/Y is compact,

H. Furstenberg [F] proved, as a strengthening of the fact that all orbits of H

are dense, that the horocycle flow is "uniquely ergodic" (only one //-invariant

ergodic probability measure). The existence of closed orbits when G/Y is not

compact shows this is not so in general. But the results of [Dl] imply that

an //-invariant ergodic probability measure on G/Y is either G-invariant or

supported by a closed orbit of H. This led to the following conjecture, to be

called here the "measure theoretic conjecture".

4.2. Conjecture (Dani [D2], Margulis [Ml, M3]). Let H be Ad-unipotent and
ß an ergodic H-invariant probability measure on ñ. Then there exists a closed

subgroup L of G containing H, a point jceil such that L.x is closed and p.
a L-invariant measure with support L.x.

To be more precise, this is conjectured in [D2] when G is reductive (as in

3.2) and H one-dimensional. Moreover, it is proved in [D2] when H is a

maximal horospherical subgroup of G.

In her papers M. Ratner refers to this, or rather to a variant of it (see below)

as the "measure theoretic Raghunathan conjecture" because it is the measure
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theoretic analogue of the topological conjecture. It seems to me this is somewhat

of a misnomer, since, as far as I know, Raghunathan did not consider the
measure theoretic case at all.

4.3. To state Ratner's theorem, we use a definition introduced in [Rl, R2, R3]:

let ß be an //-invariant probability measure on £2. Denote by A = A(ß) the

set of g G G which leaves it invariant. It is a closed subgroup [Rl, Proposition

1.1]. Then ß is said to be algebraic if there exists x G Q such that Gx n A

is of finite covolume in A and Ax is the support of ß. In particular Ax is
closed [R, Theorem 1.13].

Theorem 4 (M. Ratner). We drop the assumption that Y has finite covolume.

Let H be as in Theorem 3. Then any ergodic H-invariant probability measure

ß on Q is algebraic. If H is connected, it contains a one-parameter subgroup,
Ad-unipotent in G, which acts ergodically on (£2, ß).

The first assertion is proved in [R3, Theorem 3], after having been established

for G solvable in [Rl] and for G semisimple, Y cocompact, in [R2]. The
second one is Proposition 5.2 in [R3].

To reduce the proof to the one-dimensional case, [R3] also provides a count-
ability statement (Theorem 2 there), namely:

Theorem 5. Fix xeQ. Let Q>X(G, Y) be the set of closed connected subgroups

L of G with the following property : Gx n L has finite covolume in L, and

L contains a connected subgroup of G generated by Ad-unipotent elements of

G which acts ergodically on (L.x, vl) , where vl is the L-invariant probability

measure on L.x. Then Q>X(G, Y) is countable.

5.   Some remarks on the proofs and further developments.

5.1. We shall not try to describe the proofs, which take over 200 pages, and

limit ourselves to some comments, all the more since we can refer to Ratner's
survey [R9] for further information.

There is so far only one proof of Theorem 4, given in [Rl, R2, R3]. It is

also described for SL2(R) in [R5] and sketched in the general case in [R6].

The assumption Ad-unipotent for one-parameter subgroup H is used in two
crucial ways. First, the adjoint representation Ad B : h >-> AdB/z of H on the Lie

algebra g of G is given by a polynomial mapping of H into End (g), and all

orbits of H there are closed. Second, if G is semisimple, the Lie algebra \\ of

H belongs to a " sl2-triple"; i.e. there exists a homomorphism q> : M -* G of a

covering M of SL2(R) such that H is the (isomorphic) image of the identity
component of the inverse image of the group of upper triangular unipotent

matrices of SL2(R). The image A under <p of the identity component of the
inverse image of the group of diagonal matrices in SL2(R) then normalizes

//, and AdBA is diagonalisable (over the reals). M. Ratner then says that A

is diagonal, or is a diagonal, for H. This allows one in particular to use the
representation theory of SL2(R) to describe the actions of A and H on g by
the adjoint representation.

The first fact yields some control of some orbits, in particular of the time

passed in certain subsets. The starting point of such estimates is the following
property of polynomials on the line:
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Let ¿P(n) be the set of polynomials on R of degrees ^ n . Then there exists

n G (0, 1) with the following property : if P g 3P(n) is such that for given

t, 8 > 0, it satisfies the condition

maxs€[0,l]\P(s)\ = \P(t)\ = d,

then 0/2 < \P(s)\ < 6 for s G [(1 - n)t, t].

5.2. The passage from Theorem 4 to the uniform distribution theorem 3.9 is

carried out in [R4], described for SL2(R) in [R5] and sketched for the general

case in [R6]. The proof is by induction on dim G so that it may be assumed

that there is no proper closed connected subgroup M of G containing H such

that M n Gx is of finite covolume in M. In this case, it has to be shown

that H.x is uniformly distributed with respect to the G-invariant probability

measure dvG on £2. This will also imply that H.x is dense in G. For / > 0,

let Tx>t be the measure on the space C0(G) of bounded continuous functions

on G defined by

Tx, t = t~[ / f(expsy).x)ds.
Jo

Then it has to be shown that

dvG = lim Tx>t
t—»oo

in the weak sense, i.e. / fdvG = UmTXyt(f) for / G C0(G). The measures

Tx 11 are obviously ^ 1 in norm. Since a bounded set of measures in the

weak * topology is relatively compact, the set M(x, //) of measures which are

limit points of sequences Tx,t¡ (tj —> oo) is not empty. All these measures

are //-invariant. One has to prove eventually that M(x, H) consists solely

of dvQ. Let ß G M(x, //) and Y be its support. It is shown first that

ß(Cl) = 1 . By a general fact, ß admits a decomposition into ergodic //-

invariant probability measures, i.e. there exists a family of £ = {ßy} of ergodic

//-invariant probability measure so that the supports C(y) of the ßy form

a partition of Y and a measure v^ on the quotient Y/i\ such that ß(f) =

Sßy(f\C(y))vc. (All this is not really true as stated, but only up to sets of
measure zero for the measures under consideration.) Now by Theorem 4, each

ßy is algebraic, i.e. there exists for y G Y a closed subgroup Ay containing H

such that C(y) = A°.y , the intersection A°nGy has finite covolume in A0 and

ßy is the A0-invariant probability measure on A0.y. Then the main part of

the proof consists in showing, under our initial assumption, that the //-measure

of the union of the C(y) which are ^ £2 is zero. This is established for G

semisimple in Theorem 2.1 and in the general case in Corollary 3.1 of [R4].

5.3. Another way to go from Theorem 4 to 3.9 is described in [DM4]. The

authors also prove their own variant of a countability theorem (Theorem 5.1):

Fix a right invariant Riemannian metric on G, whence also a Riemannian

metric on £2. Given c > 0, let Wc be the set of closed connected subgroups H

such that HY/Y is closed and has volume ^ c. Then the set of intersections

// n T for H G Vc is finite. Let further p : G -» GL(V) be a finite dimensional

representation of G with kernel central in G. Then the set of H eVc for which

p(HnY) is Zariski dense in p(H) is finite.
In this theorem, Y need not have finite covolume.
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5.4. In fact, [DM4] proves a generalization of 3.9, also independently obtained

in [R6, Theorem 7], involving a sequence of Ad-unipotent subgroups. Let U„

(n G N) and U be Ad-unipotent one-parameter subgroups of G. The relation

U„ -» U means, by definition, that U„(t) -» U(t) for every igR. We refer

to 3.3 for the definition of L(x, U). In view of Theorem 3, L(x, U) = G if
and only if U.x is dense in £2.

Theorem 6. Let U be a one-dimensional Ad-unipotent subgroup of G such that

L(x, U) = G and x G £2. Let x„ G £2 tend to x and Un be a sequence
of one-dimensional Ad-unipotent subgroups of G tending to U. Then for any

sequence tn —► oo and any bounded continuous function f on £2 we have

lim t~{ I  f(U„(s).xn).ds = i fdvG.
'"^°°       Jo Ja

5.5. In [MS] the authors consider a sequence of Ad-unipotent one-dimensional

subgroups { U„} (not necessarily convergent) and a convergent sequence of mea-

sures ßn -> ß, where ß„ is ergodic and U„ -invariant. They show, among other

things, that ß is algebraic, invariant and ergodic for some one-dimensional
Ad-unipotent subgroup.

5.6. The assumption that H° is generated by Ad-unipotent subgroups is of

course essentially used. Some assumption on H is certainly needed since,
for instance, some orbits of the group of diagonal matrices A of SL2(R) in

SL2(R)/SL2(Z) have closures which are not even manifolds. Nevertheless, The-

orems 3 and 4 (resp. Theorem 4) have been extended to some more general
classes of groups by M. Ratner (resp. S. Mozes).

a) [R6, Theorem 9]. H is connected, generated by a closed connected sub-

group M, itself generated by Ad-unipotent one-dimensional subgroups, and

by subgroups A¡ (I, ... , m) where A¡ is diagonal with respect to some one-
dimensional Ad-unipotent subgroup U¡ of M (see 5.1 for that notion).

b) [Mo]. G has a connected semi-simple subgroup L without compact factors
containing H, and H is connected, epimorphic in L.

Here epimorphic is in the sense of [BB]. This is equivalent to requiring that
the regular functions on L/H be only the constants.

There is an overlap between these two classes. For instance, both contain

the parabolic subgroups of a connected semisimple subgroup L of G without
compact factors.

III. The S-arithmetic case

The Oppenheim conjecture gives a criterion for an indefinite quadratic form
to be "rational", meaning rational with respect to Q. In [RR], the authors

initiated the consideration of an analogous question over a number field k . It

involved looking at quadratic forms over the archimedean completions of k.

This was taken up and generalized in [BP1] and [BP2], where finite places are

also included (following a suggestion of G. Faltings). Subsequently, extensions

of some of (resp. all) the results on flows have been obtained in [MT2] (resp.

[R8]). To complete the picture, I describe some of these generalizations in
this section, assuming familiarity with some basic concepts in algebraic number

theory and also, in §§7 and 8, with the theory of linear algebraic groups.
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6.   The generalized Oppenheim conjecture.

6.1. In the sequel, k is a number field and o the ring of integers of k. For

every normalized absolute value | • |„ on k , let K be the completion of k at

v . In the sequel S is a finite set of places of k containing the set S^, of the

archimedean ones, k$ the direct sum of the fields ks (s e S) and 05 the ring

of 5-integers of k (i.e. of elements x e k such that \x\v ^ 1 for v $ S).

For 5 non-archimedean, the valuation ring of ks is denoted os.

Let F be a quadratic form on k$ . Equivalently, F can be viewed as a

family (Fs) (s G S), where Fs is a quadratic form on k" . The form F is non-

degenerate if and only each Fs is non-degenerate. We say that F is isotropic

if each Fs is so, i.e. if there exists for every s G S an element xs G k" - {0}

such that Fs(xs) = 0. The form F is said to be rational (over k ) if there exists

a quadratic form F0 on k" and a unit c of ks such that F = c.F0 , irrational

otherwise.

6.2. The following theorem reduces to the truth of the Oppenheim conjecture

if k = Q and S = S^ consists of the infinite place. That (i) and (ii) are

equivalent is the generalized Oppenheim conjecture.

Theorem 7 ([BP2], Theorem A). Let n ^ 3 and F be an isotropic non-degener-

ate quadratic form on kg . Then the following two conditions are equivalent:

(i)   F is irrational.

(ii)   Given e > 0, there exists x e o¡¡ such that 0 < |-Fs(x)|.s < e for all

seS.

Here again (ii) =*■ (i) is obvious, and the main point is (i) =>• (ii). For

S = Soo , the proof is patterned after that of Margulis [M3]; it is based on a

generalization of Proposition 1 (and of Theorem 1 ' in [M3]) to the case where

(1) G = nSL3(fcs), r = SL3(os), H = ]JSO(Fs).
s€S ses

To treat the general case, this result is combined with an argument using strong

approximation in algebraic groups and some geometry of numbers.

Remarks. 1 ) We have assumed that each Fs is isotropic over ks. If this is not

so, it is easily seen that Theorem 7 cannot hold (see 1.10 in [BP2]).

2) In the original case k = Q and 5" = S^ , we already pointed out in 1.3
that the truth of the Oppenheim conjecture and one theorem of Oppenheim

imply that F(Z") is dense in R when F is irrational. In the general case,

going from Theorem 7 to the density appears to be more difficult. At this time,

it has to make use of the orbit closure theorem, which then yields again a much
stronger statement (see §8).

7.   Closures of orbits.

7.1. The results of §6 and their proofs led one naturally to ask whether the re-

sults on flows reviewed in II would extend to a framework including the one

of 6.2, where G would be a product of real and p-adic groups. This general-

ization was carried out by M. Ratner [R7, R8, R9] for all of her results and,
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independently, by G.A. Margulis and G. Tomanov [MT1, MT2] for the mea-
sure theoretic conjecture in the setting of algebraic groups. We focus here on the

orbit closure theorem and then, in the next section, deduce from it an extension

of Proposition 2, hence also of Theorem 2, to the S-arithmetic case.

7.2. Again, the framework of Ratner's work is Lie group theory, rather than

algebraic groups. We refer to [Bui] or [SI] for the notion of Lie group over a

local field E of characteristic zero (i.e. R, C or a finite extension of Qp or,
equivalently, the fields ks of 6.2, for variable number fields k). If Î? is an

algebraic group defined over E, then the group 3?(E) of rational points of Î?

is in a natural way a Lie group over E, and the Lie algebra of 2?(E), as a Lie

group, is the space of rational points over E of the Lie algebra of 2?, as an
algebraic group.

7.3. Let k, S, ks, os, ks be as in 6.1. For each s G S, there is given a Lie

group Gs over ks and a closed subgroup Hs generated by Ad-unipotent one-

dimensional subgroups over ks. The product G of the Gs is then in a natural

way a locally compact topological group, and the product H of the Hs is a
closed subgroup.

As usual, we identify Gt (t G S) to the subgroup of G consisting of the

elements (gs)ses such that gs = 1 for s ^ t.

Two slight restrictions are imposed on Gs if 5 is non-archimedean. First,

the kernel of the adjoint representation is the center Z(GS) of G. (If Gs is the

group of rational points of an algebraic group which is connected in the Zariski

topology, this is automatic, otherwise the kernel could be bigger.) Second, it

is required that the orders of the finite subgroups of Gs are bounded. This

is always true if Gs is linear. An argument is given in [SI, IV, Appendix 3],

proof of Theorem 1. We sketch it: the maximal compact subgroup of GL„(A:i)

are all conjugate to GL„(oj), [SI, Theorem 1, p. 122], so it suffices to consider

the finite subgroup of GL„(os). Since GL„(os) is compact, it follows from

[SI, Theorem 5, p. 119] that it contains a torsion-free normal open subgroup

N. Then GLn(os)/N is a finite group, and any finite subgroup of GL„(o.y) is
isomorphic to a subgroup of that quotient.

In [R8], Gs is said to be Ad-regular if it satisfies the first condition and

regular if it satisfies both. In particular, we see from the above that if Gs is the

group of rational points of a connected linear algebraic group defined over ks,
it is regular.

In Theorem 8 below, Gs is assumed to be regular for 5 G S non-archimedean.

Theorem 8 [R8, Theorem 2]. Let G, H be as above. Let M be a closed sub-

group of G containing H and Y a discrete subgroup of finite covolume of M.

Let x G M/Y. Then M contains a closed subgroup L such that L.x is the
closure of H.x and Lc\Mx has finite covolume in L.

This is stated and proved by M. Ratner for k = Q, but this is no loss in

generality. Let Qs be the completion of Q in ks. It is therefore equal to R if

ks - R, C and to a field Qp for some prime p if ks is non-archimedean. Then
a Lie group over ks, of dimension m , may be viewed in a natural way as a Lie

group over Qs, of dimension m[ks : Qs], in the same way as a complex Lie

group can be viewed as a real Lie group of twice the dimension. Let us denote

by G's the group Gs thus endowed with a structure of Lie group over Qs. Then
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the identity map of the product G' of the G's onto G is an isomorphism of

topological groups. Moreover, if U is a one-dimensional Ad-unipotent group

over ks, then U' is a direct sum of [ks : Qs] one-dimensional Ad-unipotent

subgroup over Qs of G's. Therefore it is clear that Theorem 8 for G' implies

it for G.
One advantage of the shift to Lie groups over Qs is the fact (due to E. Carian

over the real numbers) that any closed subgroup of a Lie group over Qs is a

Lie group over Qs [Bui, Chapter 3, §8 no. 2; SI, Chapter V, §9].

7.4. The steps in the proof of Theorem 8 are similar to those for real Lie groups.
There is first a theorem proving that //-invariant ergodic probability measures

are algebraic, also established in [MT2] when the Gs are groups of rational

points of linear algebraic groups. Then a countability statement [R8, Theorem

1.3] allows one to reduce the proof of Theorem 8 to the case where H is one-

dimensional Ad-unipotent, contained in one factor, in which case a uniform
distribution theorem is also proved [R8, Theorem 3].

8. Applications to quadratic forms. We now generalize the density theorems

of 2.3 and 2.5 to the present case, using Theorem 8, in the same way as was

done in the case S = S^ in §7 of [BP2]. As stated in the introduction, we

include the proofs, obtained jointly with G. Prasad.

8.0. We shall use the following lemma. It should be known in the theory of

affine symmetric spaces. For lack of a reference, we have included a proof in

the appendix.

Lemma. Let E be a field of characteristic zero, g a simple Lie algebra over

E, a jt 1 an involutive automorphism of g and t the fixed point set of a.

Assume that I is semi-simple. Then any l-invariant subspace of g containing t

is equal to t or g. In particular, t is a maximal proper subalgebra of g.

8.1. We revert to the notation of 6.2. Moreover, let

Gs = SK(ks), Hs = SO(Fs)       G = l[Gs,    H=\[HS,
ses ses

% be SL„ viewed as algebraic group over ks and %¡ the algebraic group over

ks such that £%(ks) = Hs.

Following a notation of [BT], we let H+ denote the subgroup of Hs gener-

ated by one-dimensional unipotent (hence Ad-unipotent) subgroups. We claim

that it is a closed and open normal subgroup of finite index of Hs. If ks = C,

this is immediate, since Hs is semisimple and connected in the usual topology,

and in fact Hs = //+ . If ks = R, then /// is the topological identity compo-

nent of Hs and has index two. Now let ks be non-archimedean. Let %l be

the universal covering of %fs, i.e. the spinor group of Fs, and ß : ^ —> £% the

central isogeny. Let Hs = ß%(ks). It is known that Hs — H+ is generated by

one-dimensional unipotent subgroups [BT, 6.15], that ß(H+) = //+ [BT, 6.3]

and that ß(Hs) is a normal open and closed subgroup of finite index of Hs

[BT, 3.20], whence our assertion in that case.

We note that //+ is not compact, since it is of finite index in Hs and the

latter, being the orthogonal group of an isotropic form, is not compact.
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We let \js be the Lie algebra of Hs and Ns the normalizer of \js in Gs, i.e.

Ns = {g&Gs\ Ad g(t)s) = t)s}.

We claim that Ns is also the normalizer of Hs or of //+ . In fact, both groups,

viewed as Lie subgroups of Gs, have t)s as their Lie algebra, therefore any

element g e Gs normalizing Hs or /// belongs to Ns. Conversely, let g G Ns.

Since t)s is the space of rational points of the Lie algebra of ß% and is of course

Zariski-dense in it, the automorphism Intg : x >-+ g.x.g~l of ^ leaves %?s

stable, hence g normalizes Hs and therefore also //+ .

Lemma, (i) Hs+ has finite index in Ns. (ii) Let M be a subgroup of Gs con-

taining Hs+ . Then either M = Gs or M c Ns.

(i) Since /// has finite index in Hs, it suffices to show that Hs has finite index

in Ns. The only quadratic forms on k" invariant under Hs are the multiples

of Fs. If x G Ns, then 'x.Fs.x is invariant under Hs, hence of the form

c.Fs (c G k*). It has the same determinant as Fs ; hence c" = 1, and therefore

Ns/Hs is isomorphic to a subgroup of the group of H-th roots of unity.

(ii) Identify Fs to a symmetric, invertible, matrix. Then the map

a:x^Fs.'x-l.Fs-1       (x G Gs)

is an automorphism of Gs, obviously of order two, and Hs is the fixed point set

of a . The differential da of a at the origin is an involutive automorphism of

qs with fixed point set t)s. The group 2?, (resp. %¡ ) is simple (resp. semisimple)

as an algebraic group; therefore qs (resp. \)s ) is a simple (resp. semisimple) Lie

algebra. By 8.0, any ^-invariant subspace of qs containing l)s is equal to hs
or to qs .

Now let M be a subgroup of Gs containing //+ but not contained in Ns.

We have to show that M = Gs. Let g be the subspace generated by the

subalgebras Adm(t)s), (m G M). It is normalized by M, obviously, and in

particular by Hs+ . Therefore it is ^-invariant. It is ^ fys, since M is not

in Ns. By the remark just made, g = g^. There exists therefore a finite set

of elements m¡ G M(\ < i < a) such that qs is the sum of the subalgebras

f), = Adm¡(t)s). The Lie algebra h, is the Lie algebra of //, = m¡.Hs+.m~l.

Let Q = //] x ... x Hd be the product of the Hi and ß : Q -» Gs be the
map which assigns to (hi,... , ha) (h¡ G //,) the product of the h¡ 's. It is a

morphism of ^-manifolds, whose image is contained in M. The tangent space

at the identity of Q is the direct sum of the Í), 's. Therefore the differential

dß of ß at the identity maps the tangent space to Q onto g^. This implies

that ß(Q) contains an open neighborhood of the identity in Gs (see [SI, III,

10.2]). Since it belongs to M, the latter is an open subgroup of Gs. It contains

//+, which is not compact, as noted in 8.1, hence is noncompact. Moreover,

it'is elementary that Gs = Shnks is generated by the group of unipotent upper

triangular matrices and its conjugates. It then follows from Theorem (T) in [Pr]
that M = Gs.

8.3. Let T = SL„(o,s). It is viewed as a discrete subgroup of G via the embed-

dings SL„(k) -» SL„(ks). The quotient £2 = G/Y has finite volume. We let o
be the coset Y in £2.

Theorem 9. If F is irrational, the orbit H.o is dense in £2.
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Let H+ be the product of the groups //+ (see 8.1). Since Hs+ has finite

index and is normal, open and closed in Hs, the same is true for H+ in H,

and it is equivalent to prove that H+.o is dense in £2.

By Theorem 8 (with M = G), there exists a closed subgroup L of G such
that L.o is the closure of H+.o and L n Y has finite covolume in L.

Let Ms — Lf]Gs. It is a closed normal subgroup of L which contains Hs+ .

By 8.2, we have either Ms C Ns or Ms = Gs. Now let Ps be the projection

of L into Gs. It normalizes Ms and contains it. Assume Ms C Ns. Then

Adg (g G Ps) leaves invariant the Lie algebra of Ms, which is the same as that

of Hs, hence g belongs to Ns. In particular, Ps is closed and open in Ns.

If Ms = Gs, then Ps = Gs. Therefore the product M of the Ms is normal,

closed and open, of finite index in the product P of the Ps, and P is closed.

We have of course M c L c P. As a consequence, M is normal, open and
closed, of finite index, in L.

Now define Qs by the rule: Qs = Hs if Ms C Ns, and Qs — Gs if Ms — Gs,
and let Q be the product of the Qs. Then Q n L is open and closed, of

finite index, in both L and Q. Therefore Qr\Y has finite covolume in Q.

By Proposition 1.2 in [BP2], there exists a ^-subgroup S of SL„ such that

&(ks) = Qs for every s e S. This shows first of all that either Qs = Gs for all

s e S or Qs = Hs for all s £ S. In the first case, L = G and //+.o is dense.

We have to rule out the second one. In that case H.o is closed, L = H+ and

H n T has finite covolume in H. Moreover @ is the orthogonal group of a

form F0 on k" , and there exists a unit c of fc5 such that F = c.F0 , i.e. F
is rational over /:, contradicting our assumption.

8.4. We can now generalize 2.5.

A subset (xj, ... , xm) (m ^ n) of og is said to be primitive if it is part of a

basis of og over 05 . If m < n , it is so if and only if there exists g G SL„(os)

such that x¡ = g(e¡) (i = 1, ... , m), where e¡ is the i-th canonical basis
element of kg.

Corollary. Assume F to be irrational. Let X¡ € ks (i = 1, ... , n — 1). Then

there exists a sequence of primitive (n - \)-tuples (xjy t, ... , xJ>B_i) (;' =
1, 2... ) in ons such that

k¡ = lim F(Xj i)       (i = 1, ... , n - 1).
j->oo

In particular, the set of values of F on primitive elements of og is dense in

ks.

The argument is the same as in 7.9 in [BP2]. We repeat it for the sake of
completeness.

Let A, \ s be the component of A, in ks (s G S). The form Fs, being isotropic,

takes all values in ks. The representation of Hs in k? is irreducible, and no

level surface Fs = c is contained in a hyperplane; hence, given í g S, we can

find linearly independent vectors ys,,- G k" such that Fs(ys,,) = A/;i. There

exists then gs G Gs such that &(£,) = y, , (/ = 1, ... , « - 1). Let g = (gs)

and y i - (ys, ¡) G kg . Then

F(yi) = F(g.ei) = ki       (i = 1, ... , n - 1).
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By Theorem 8, H.o is dense in £2, hence HT is dense in G. There exist

therefore elements hj G H, y¡; G Y (j = 1, 2, ...) such that h¡.y¡ -* g. Then

ki = F (g.a) = lim F(hj.yj.ei) = lim F(yj.e¡) = lim F(x;,,),
j—»oo j—>oo y—»oo

where x;,, = ty.e, (j = 1, 2 ,...;/'= 1, ... ,n- 1). For each /, (*/, i, ... ,
Xjt n-i) is a primitive subset of o" , whence the corollary.

8.5. Errata to [BP2]. In the proof of 7.4, the difference between //+ and H

has been overlooked. In the archimedean case the subgroup of Hp generated

by unipotent elements is the topological identity component HF of Hp, and

its index is twice the number of real places. The corrections on page 369 are:

Line 2: After Hs add: Let H° be the connected component of the identity
in Hs and HF the product of the H°.
Line 3: Replace Hp by HF.

Line 5: Replace Hs by H°.
Line 12: Replace G by & and 7.2 by 7.3.
Line 23: Replace 7.3 by 7.4.

9. Appendix: A Lemma on symmetric Lie algebras. In this appendix, we prove

the lemma in 8.0. (We recall that, if E — R and É is maximal compact or g

is compact, this is true without restriction on f and is due to E. Carian.)

The case where g is one-dimensional is left to the reader, so we assume g
to be also semisimple. Let p be the (-l)-eigenspace of a in g. Then

(i) g = e©p     [t, t]ce, [t, p]cp     [p,p]ci

as usual. If m is a 6-invariant subspace of p, then 6 © m is a subalgebra, so
that in fact the last clause of the lemma is equivalent to the lemma itself.

Let B be the Killing form of g. It is non-degenerate and B(t, p) = 0;

hence the restrictions of B to t and to p are non-degenerate. We recall that,
by invariance

(2) B([a, b], c) = B(a,[b, c])       (a,b,ceS).

The proof is divided into a number of steps:

a) Let m c p be a E-invariant subspace.  Then [m, m] is an ideal of 6 and
[m, m] © m a subalgebra normalized by É.

This follows by straightforward application of the Jacobi identity and (1).
b) We have [p, p] = Ï.

In fact, [p, p] © p is a subalgebra normalized by i in view of a), hence a
non-zero ideal, hence equal to g.

c) Let m, n be e-invariant subspaces of p and assume B(m, n) = 0. Then
[m, n] = 0.

Let m G m, « G n and k e t. Then

B(k, [m, n]) = B([k, m], n) c B(m, n) = 0;

therefore [m, n] belongs to the radical of the restriction of B to t. Since the
latter is non-degenerate, this proves [m, n] = 0.

d) There is no proper f-invariant subspace m of p, on which the restriction of
B is non-degenerate.

Let m be one and n its orthogonal complement. Then p = m © n. By c)

(3) [m,n] = 0.
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By b), a = [m, m] © [m] and fa = [n, n] + n are subalgebras, and (3) implies

that [a, b] = 0. By b) and (3), E = [m, m] + [n, n] ; hence g = a + fa and a, fa

are distinct non-zero ideals of g, a contradiction.

e) There is no proper t-invariant subspace m of p on which the restriction of

B is degenerate but non-zero.

Assume m is such a subspace. Let r be the radical of B\m. It is non-zero,

^ m, invariant under t. There exists a t-invariant supplement n to r in m,

and n / 0. Then 5|n is non-degenerate, and we are back to d).

f) There is no proper i-invariant subspace m of p which is isotropic for B.

Let m be one.   If dim m < dimp/2, then the orthogonal subspace n to

m has dimension > dimp/2 and is invariant under t, and the restriction of

B to n is non-zero. We are back to e). There remains to consider the case

where dimp is even, dimm = dimp/2, ß|p is hyperbolic, and m is maximal

isotropic. Moreover, the representation of É in m is irreducible; otherwise we

would be back to the case just treated. There exists a supplement n to m in p

which is 6-invariant. Then, again, it has to be maximal isotropic. By c),

(4) [m, m] = [n, n] = 0;

hence by b)

(5) t = [m, n].

It follows from 1 ) and 4) that m and n consist of nilpotent matrices. The

normalizer of n in m is 6-invariant, hence reduced to zero in view of (5) and

the irreducibility of the representation of É in m. Therefore n is the nilpotent

radical of t © n, and the latter is the normalizer of n. By Theorem 2 in [Bu 1,

8, §10], É©n is parabolic. But É is assumed to be semisimple, whence a

contradiction. This concludes the proof.

Remarks. 1) In this paper, 8.0 is only needed in case E = ks, q = qs and

t — hi. If it holds after extension of the groundfield, it is clearly already true

in the original situation. Since ks may be embedded into C, this reduces us

to the case where E = C, g = sl„C and t is the Lie algebra of SO„(C). A
reader who would have a direct argument in that last case could then avoid any

recourse to 8.0.

2) As the fixed point set of an involution, t is always reductive. The as-

sumption 6 semisimple has been used only in the last step of the proof. Some

restriction is necessary, since otherwise sl2 already provides a counterexample,

with a having the diagonal matrices as fixed point set. Over C, other coun-

terexamples are given by the complexifications of hermitian symmetric pairs.

In fact, the proof leads to a complete description of the cases where i is not
proper maximal, namely,

g = £©n©m

where n, m are commutative, are the nilpotent radicals of two parabolic sub-

algebras with maximal reductive subalgebra t, the representation of t in n

and m are contragredient of one another, irreducible, the split center of 6 is

one-dimensional and acts by dilations on m and n. Conversely, given such a

decomposition of g, the map of g onto itself which is the identity on t and

-Id. on m © n is obviously an automorphism.
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