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Let me make some comments on the exposition. I cannot stand the common

practice of using acronyms to denote different variants of an algorithm (or any-

thing else for that matter). In this book the authors use abbreviations instead,

and though it was unwieldy at first, I somehow got used to it. The polynomial

procedure for solving a system that I just described is denoted by

(RECUR • SPAN, M • VECTOR, KRYLOV) h MIN • POL.

The capitalized words look awkward, but some of it depends on a misuse of

Tg;X mathematics style; changing the style into text yields

(RECUR.SPAN, M.VECTOR, KRYLOV) y MI N.POL,

which looks slightly better to me. English is not the native tongue of the au-

thors, nor of this reviewer, and it would have been helpful if the text had been

scrutinized for language by the publisher. It is difficult for a Russian who never

uses articles (either the or a) to get them in the right place.
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To one who first met potential theory almost half a century ago it comes

as a surprise that central topics such as "equilibrium distribution" and "energy

integral" are never mentioned in this book. Even "capacity" seems to occur in
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only one short section toward the end. The content of mathematical subjects

obviously changes with time. "Harmonic analysis" is another example: this term

used to refer to trigonometric series (via overtones), was then expanded to cover

the study of functions on groups or of function spaces that were invariant under

the action of some group, and nowadays mathematicians who call themselves

harmonic analysts seem to spend most of their time investigating all sorts of

maximal functions.

The book under review is primarily concerned with the invariant Lapla-

cian A on the unit ball B of C" and with the invariantly harmonic (also

called ^-harmonic) functions / which satisfy Àf — 0. These will be defined

presently. (To be quite explicit, B is the set of all z = (z\, ••• , z„) in C"

with £, N2 < 1 •)
There are at least three local notions of harmonicity that occur naturally in

the study of several complex variables.

(i)   u is harmonic in an open set ficC" if Aw — 0, where

«     / ß2 ß2  \ " ß2

A = ¿f\d¿f + dy]) = 4¿fdz~d¥i

is the ordinary Laplacian.

(ii)   u is n-harmonic if 92w/oz,öz; =0 for i = 1, ... , n, i.e., if u is
harmonic in each variable separately.

(iii)   u is pluriharmonic if d2u/dz]d'zic = 0 for all j, k = 1, ... , n . Lo-
cally, the real-valued pluriharmonic functions are precisely the real parts

of holomorphic functions.

In certain regions Í2 c C" it also makes good sense to introduce some global
definitions.

Let Aut(Q) be the group (relative to composition) of all one-to-one holomor-

phic maps of Q. onto £2. If Aut(fi) is transitive on fi, then Q is called homo-

geneous. If, in addition, there is a y/ e Aut(fi) that has period 2 (y/(y/(z)) = z)

and fixes exactly one point of Q, then Q is called symmetric.

Choose a e B, let P be the orthogonal projection of C" onto the sub-

space [a] generated by a , let Q — I - P be the projection onto the orthogonal
complement of [a] in C", and define

where (z, a) = £z,-u¿. It is easy to prove ([6, Theorem 2.2.2]) that <pa e

Aut(-ß), that (pa interchanges 0 and a, and that Aut(5) is therefore transitive

on B. The map z ^ -z shows then that B is a bounded symmetric domain.

The polydiscs are other well-known examples of such domains. Elie Cartan
[1] classified them all.

To define Au, for u € C2(B), let (Àu)(a) be the ordinary Laplacian of
uo(pa, evaluated at the origin, i.e.,

(2) (ÄM)(a) = (A(«opfl)(0).

It is then almost immediate ([6, Theorem 4.1.2]) that Ä is invariant in the sense

that it commutes with the action of Aut(fi) :

(3) Â(m o y/) — (Am) o y/

for every y/ e Aut(B).
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Thus Àm = 0 implies A(w o y/) = 0 for every y/ G Aut(5). Since (1) is

reminiscent of a Möbius transformation, these u 's are called ^-harmonic.

The author does not define À as in (2), but takes the reader on a longer tour

which places the matter into a wider context:

To every bounded domain ñcC" corresponds its Bergman kernel K(z, w),

whose characteristic features are as follows. Define

(4) K[f](z)= [ f(w)K(z,w)dV(w) (zgQ),
Jn

for / g L'(Q) with respect to Lebesgue measure dV. Then K[f] = f (re-

producing property) for every holomorphic / G L'(Q), and / -* K[f] is the

orthogonal projection of L2(ü.) onto its subspace of holomorphic functions.

Moreover, K(z, z) > 0, and the matrix {g¡j{z))(i, j — 1, • • • , n) defined by

(5) glM. Êîim

turns out to be positive definite. Denote its inverse by (g'j(z)), and let g =

det(gl7) •

The gij 's determine an invariant metric on Q which, in turn, induces the

so-called Laplace-Beltrami operator

which has the invariance property

(V) Àn(f°V) = (Àaf)°V

for every y/ g Aut(Q). (The author refers to [4] for the proof of (7).)

It should be pointed out here that (6) makes sense in every Q but that

(7) may well be true vacuously, because most regions Q have no nontrivial
automorphisms.

In B , the Bergman kernel is

n\

and (6) becomes

^ À        4(1-|z|2)   A .. -,     d2

j,k=\ J      K

Starting from (2), it is quite easy ([6, Theorem 4.1.3]) to arrive at

(10) Ä=(/2+l)ÄB.

These two operators thus annihilate the same functions.

Returning to an arbitrary Q, a function u G C2(Q) is said to be weakly

harmonic if Àqu — 0, and to be strongly harmonic if Du = 0 for every linear

differential operator D which satisfies D\ — 0 and (Df) o y/ = D(f o y/) for
all y/ G Aut(í2).

The author states, without proof or reference (pp. 3, 31)

(a) that these two concepts coincide when Q. — B, and

(b) that this happens only when Q = B .
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The proof of (a) is actually quite easy. If Â/ = 0, then / has the mean-value

property

(11) f(z) =  ( f(<p2Uw)dU ((z,w)eBxB)
Jit

where dU denotes the Haar measure on the unitary group % ; the left side of

(11) is (/o <pz)(Q), the right side is the average of f ° <pz over the sphere of

radius |iu|, center 0. Moreover, (11) forces / to be in C°°(B). If now D is

as above, fix z in (11), apply D to the resulting function of w , and evaluate

the result at w = 0, getting

(12) 0= [ (Df)(y>zUw)dU = (Df){<pM) = (Df)(z)
w=0

As for (b), I don't know how to prove it.

On polydiscs, the strongly harmonic functions are precisely the «-harmonic

ones. There is an example on page 24 of a weakly harmonic function which is

not strongly harmonic.

When n = 1 , i.e., when B is the unit disc in C, then the harmonic functions

are the same as the ^-harmonic ones, even though A / A ; this follows from

(9). But when n > 1, there are significant differences. Here are three:

(i) It is often very convenient to replace a harmonic function u by its

dilates ur (ur(z) - u(rz)) and then let r / 1 . This device is not

available for .^-harmonic functions. In fact, if there is one r, 0 <

r < 1, such that u and ur are .^f-harmonic, then u is pluriharmonic

([6, Theorem 4.4.10]). This makes it much harder to prove that even

bounded ./#-harmonic functions are Poisson integrals of their boundary

values. (See Theorem 5.8 of Stoll's book, or [3], or David Ullrich's proof
of Theorem 4.3.3 in [6].)

(ii) If Am = 0 and Au = 0, then u is pluriharmonic.

(iii) In PDE language, A is uniformly elliptic, whereas À degenerates at the

boundary S of B. This accounts for the following phenomenon (pp.

48-51): There are C°°-functions on S whose -#-harmonic extension

to B is not C°° . In fact, smoothness at the boundary forces Jt-

harmonic functions to be pluriharmonic! The basic idea of this is in

[2]. A sharp (unpublished) result in this direction involves the radial
derivative

(13) {3fu){rQ = lim "(?Cj ~ "(rg) (0 < r < \, Ç € S)

and says:

// (Am)(z) = 0 for all z in the unit ball of C , e(r)-»0 as r -* 1,
and

(14) [\(3>"u)(rO\2da(Q = e(r)\og2(-^)       (0 < r < 1),
Js l - r

then u is pluriharmonic.

Here a is the rotation-invariant positive measure on S that gives o(S) = 1 .
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A good part of the book is devoted to A'-subharmonic functions. These

are upper semicontinuous and, by definition, are characterized by the invariant

mean-value inequality

[15) f(z)<j f(tp2(rO)da(Q.

• i
t2y-\t\-2ndu

1*1

To every such / corresponds a unique regular Borel measure (if (the Riesz

measure of / ) which satisfies

(16) j hdßf= I fhhdk
Jb Jb

for every smooth h with compact support in B . Here

(17) dX(z) = b!«-"(1 - |z|2)-"-'^F(z)

which has the invariance property k(tp(E)) = 1(E) for all y> G Aut(Z?).

The fundamental solution (Green's function) for À is

(18). G(z, w) = g(ipw(z))       ((z,w)eBxB)

where

(19) g(z) = ^-± [\i-t2y

The Green potential of a nonnegative measure (i on B is

(20) Gß(z)= [ G(z,w)d(i(w)       (zeB).
Jb

The finiteness of JB(l - \w\2)"d(i(w) is necessary and sufficient for Gß(z) ^

+oo. In that case one has an extension of Littlewood's theorem [5], namely,

(P. 96)

(21) lim(7„(ri) = 0        a.e. on S.
ry\

The classical Riesz decomposition theorem takes the following form (p. 70):

If f is Jt'-subharmonic and has an A-harmonic majorant in B, then

(22) f(z) = Hf(z) - ( G(z, w)dfif(w)
Jb

where Hf is the least Jt-harmonic majorant of f in B, and (if is as in (16).

The original proofs of (21) and (22) are in [7].

The book contains also a number of more technical results concerning the

boundary behavior of Green potentials, of Hardy spaces, of Bergman spaces,

and of Dirichlet spaces. Many of these are due to the author.

The topics included in this book are well chosen and well presented. The

index is a bit skimpy, and a one-page list of special notations would have been

helpful. Among the few misprints only one seems to have any mathematical

implication: at the bottom of page 35, if both functions are only locally in Ll

and in LP , their convolution need not be defined.

And surely Shur should be Schur!
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Topological dynamics, which is the subject of the book under review, is a sub-

field of what might be called "abstract dynamics". The latter covers a vast canvas

and for this reason is difficult to define precisely. One possible (although incom-

plete) definition is the asymptotic, or long-term, properties of families (usually

groups or semigroups) of self maps of spaces. It includes topological dynam-

ics (continuous maps of topological spaces), ergodic theory (measure-preserving

transformations of probability spaces), and smooth dynamics (diffeomorphisms

of smooth manifolds). Of course there are many interrelations among them,

as well as with other branches of mathematics. The subject of dynamics dates

back (at least) to Newton and the modern, abstract approach to Poincaré. The

abstract point of view was expounded more explicitly by Birkhoff, who consid-

ered groups of transformations on metric spaces. A concise historical survey

appears in the introduction to the book by Furstenberg [F].

The book of Nemytskii and Stepanov [NS], to which the author draws at-

tention in the introduction, was probably the first to present systematically the

properties of solutions of differential equations in terms of flows (actions of

the reals) on metric spaces. The abstract theory was laid out in detail in the

Colloquium volume of Gottschalk and Hedlund [GH], in which arbitrary group

actions were emphasized. The subject then took on a life of its own and dealt

with topics rather far from its origins. For instance, the books of Ellis [E] and

the reviewer [A] concentrate on the structure of minimal flows, and the spe-

cialized books of Furstenberg [F] and Glasner [G] develop connections with

number theory and group theory, respectively.


