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Topological dynamics, which is the subject of the book under review, is a sub-

field of what might be called "abstract dynamics". The latter covers a vast canvas

and for this reason is difficult to define precisely. One possible (although incom-

plete) definition is the asymptotic, or long-term, properties of families (usually

groups or semigroups) of self maps of spaces. It includes topological dynam-

ics (continuous maps of topological spaces), ergodic theory (measure-preserving

transformations of probability spaces), and smooth dynamics (diffeomorphisms

of smooth manifolds). Of course there are many interrelations among them,

as well as with other branches of mathematics. The subject of dynamics dates

back (at least) to Newton and the modern, abstract approach to Poincaré. The

abstract point of view was expounded more explicitly by Birkhoff, who consid-

ered groups of transformations on metric spaces. A concise historical survey

appears in the introduction to the book by Furstenberg [F].

The book of Nemytskii and Stepanov [NS], to which the author draws at-

tention in the introduction, was probably the first to present systematically the

properties of solutions of differential equations in terms of flows (actions of

the reals) on metric spaces. The abstract theory was laid out in detail in the

Colloquium volume of Gottschalk and Hedlund [GH], in which arbitrary group

actions were emphasized. The subject then took on a life of its own and dealt

with topics rather far from its origins. For instance, the books of Ellis [E] and

the reviewer [A] concentrate on the structure of minimal flows, and the spe-

cialized books of Furstenberg [F] and Glasner [G] develop connections with

number theory and group theory, respectively.
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Akin's book consists largely of topological dynamics, but most of the topics

studied are those which are motivated by smooth dynamics. As such it con-

stitutes a bridge between the two areas. Indeed, in the preface the author says

that his aim is to describe "what every dynamicist should know ... from topo-

logical dynamics." Much of the book consists of the author's presentation, in

a purely topological setting, of theory developed by Conley and Smale. Thus

Akin's book brings topological dynamics back to its origins (with due attention

to developments of recent years).

Rather than maps, the framework of the book, as set out in the first chapter, is

that of relations on compact metric spaces and the generation of new relations

from old ones. Recall that a relation on a set X is a subset / of X x X,

and if x G X, f(x) = [y\(x, y) G f]. If ^ is another relation on X, then

S ° / = [(x, z)\(x, y) G /, (y, z) e g for some y]. For a relation / the orbit

relation is iff - U~ ,/" (where f2 = f°f and /" is defined inductively).

cff is the smallest transitive relation containing /. If X is a topological space,

/ is a closed relation if / is a closed set. Of course, a continuous map on a

compact metric space is a closed relation. Given a relation f, the smallest

closed transitive relation 3?f containing / can be generated, starting with

/, by alternately closing and "transitizing" (in general transfinitely often) the
relations obtained.

Two relations of dynamical interest are Q/ and oof, defined, respectively,

by y G ß/(x) if and only if there are sequences x„ —> x, yn —> y, kn —> oo

with yn g fk"(xn), and y G cof(x) if and only if there is a sequence y„ G fk"(x)

with k„ —> oo. (The latter set is, in the case of maps, the omega limit set of

x .) If / is a continuous map, then x is a nonwandering point for / if and

only if x G í¿/(x), and x is a recurrent point if and only if x G cof(x). In

general, if g is a relation, the cyclic set of g is \g\ = [x G X\x G g(x)], and

various notions of recurrence can be defined by the condition that x e \g\.

In particular, chain recurrence can be approached from this point of view,

and this is one of the author's most successful accomplishments. The chain

relation is defined by Wf = f\{cf{Vt o f\e > 0} (where Vt denotes the e

neighborhood of the diagonal). If / is a continuous map, y G Wf{x) ("x

chains to y") if and only if for every e > 0 there are x0, Xi, ... , x„ such

that x0 - x, xn = y and d{f{x¡-\), x¡) < e for i = I, ... , n . The relation

Wf is transitive and closed and therefore contains &f (properly, in general),

and x is chain recurrent if x G |^/|. Interesting relations between attractors

and chain recurrence are developed. (A closed set A with f(A) = A is an

attractor if there is a neighborhood U of A such that Qf(x) c A for every

x G U ; a repellor is an attractor for f~l .) For maps, several useful equivalent

conditions of apparent varying strengths are given. One of these is that an

attractor is determined by its "trace" on the chain recurrent set, in the sense

that A = Wf(A n \Wf\). Also, the chain relation can be recovered from the
attractor structure: if x is a chain recurrent point, then y g Wf{x) if and only

if x and y belong to the same attractors.

If / is a homeomorphism, the chain recurrent set can also be constructed

from the limit point set /(/) = af(X) U œf(X) (where af(x) denotes the

alpha limit set of x: af — cof~l). A closed / invariant set F is called /(/)

separating if F n /(/) is open and closed in /(/). In this case cof(x) c F if
and only if cof(x) n F ^ 0 ; the set of all such x is called the inset W+(F),



BOOK REVIEWS 367

and the outset W (F) is defined similarly (using af(x) ). A generalization

of a lemma of Shub and Nitecki says: Let F be an 1(f) separating set, and

suppose x i W+{F). Then (a) : Qf(x) n F ¿ 0 implies £2/(x) n (W+{F) \
W~{F)) t¿ 0, and (b) : the same as (a) w/íA Q/(x) replaced by Q,Wf(x). Just
a few words regarding the proof, which is quite intricate: it is relatively easy,

using standard techniques, to find points y\ , y2 G Sîf(x) (or ÇlWf(x) ), each

satisfying "half of what is required—that is, y\ $ W~(F) and y2 G W+(F).
What is difficult is to find a point with both of these properties. For this, an

interesting combinatorial lemma concerning pairs of subsets of Z (or 1, which

allows the Shub-Nitecki lemma to be proved for real actions) is employed.

This lemma is used to study invariant decompositions. An invariant de-

composition .9~ for / is a pairwise disjoint finite family of closed invari-

ant sets whose union contains /(/). Thus each F G & is /(/) separating.

Regarding J as a discrete metric space, five relations of different strengths

are defined on &. These include 9[ = [{Fx, F2)\W-{F\) n W+{F2) ¿ 0],

£¡ = m , F2)\af{Fi) n F2 ¿ 0] and ^ = [(F,, F2)\Wf(Fx) n F2 ¿ 0].
The Shub-Nitecki lemma is used to show that the transitive extensions (de-

noted rf(^f)) of all these relations agree. (This turns out to be equivalent to

&if c <?(&{f).) This result is used, in turn, to obtain certain "attractor-repellor

pairs" for f, the so-called attractor structure of the invariant decomposition

&~, and then to obtain information on the location of the basic sets for / (the

equivalence classes on \Wf\ of WfnWf~[ ).

Here is another consequence of the Shub-Nitecki lemma (communicated by

Moe Hirsch). Consider a (real) flow on a compact metric space with a finite

fixed point set F such that every semitrajectory converges to some point of

F . Then every chain recurrent set belongs to a cycle of orbits connecting fixed

points (and therefore the chain recurrent set coincides with F if and only if

there are no such cycles).

The final chapter, "Hyperbolic Sets and Axiom A Homeomorphisms", defines

these notions topologically and develops their topological properties. If / is a

homeomorphism, a closed invariant subset K of X is called isolated if K has

a neighborhood U such that every invariant subset of U lies in K. ( U is

called an isolating neighborhood for K.) An attractor or repellor for / is an

isolated invariant set, and a basic set for / is isolated if and only if it is an open

and closed subset of \Wf\. A homeomorphism f is expansive if the diagonal

is isolated in X x X. (Equivalently, an orbit in X x X which is sufficiently

close to the diagonal is contained in the diagonal.) A closed invariant subset

K of X is called expansive if there is a closed neighborhood U of K such

that if jfvo is the maximum invariant subset of U, then the restriction fKo is

expansive. (Note that this says more than fx is expansive.)

If {xn} and {y„} are (finite or infinite) sequences in X and y > 0, we say

that {x„} y shadows {y„} if d(x„, y„) < y for all n . (So, for example, the

expansive condition says that there is a y > 0 such that if the orbit {fn(x\)}

y shadows {f"(x2)}, then x\ = x2.) Now let / be a homeomorphism, and let

A c X. Then A is said to satisfy the shadowing property if for every e > 0

there is a â > 0 such that every (finite) S chain in A can be e shadowed by

a 0 chain in X. That is, every S chain in A can be e chained by a piece of

an orbit. A closed invariant subset K of X is called topologically hyperbolic if

K is expansive and satisfies the shadowing property.
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The main result on topological hyperbolicity involves a weakening of the

isolation condition. Assume that the topologically hyperbolic set K is isolated

"rel Per / ". This means that there is a neighborhood U of K such that any

periodic orbit which is contained in U is in fact contained in K (so an isolated

invariant set is isolated rel Per /). Then the chain recurrent set \Wf¡c\ consists

of finitely many basic sets, each of which is an isolated invariant set on which

/ is topologically transitive. Also, the periodic points are dense in \Wf\.

The purely topological point of view is abandoned in the last part of this

last chapter. It is now assumed that / is a C1 diffeomorphism of a smooth

Banach manifold X. Hyperbolic fixed points and compact invariant sets are

defined as usual (in terms of splittings of the tangent bundle), and it is shown

that a hyperbolic invariant set for a diffeomorphism is topologically hyperbolic.

Similar results are proved for Axiom A diffeomorphisms (defined as those for

which the chain recurrent set is hyperbolic). On the way some standard smooth

results are established (Hartman's theorem and the Shadowing Lemma). The

proofs in this section rely on results—some of them quite difficult—from the

previous chapter on "Fixed Points".

This book is a substantial contribution. It is remarkable how Akin has been

able to distill the purely topological aspects of smooth dynamics. For me, the

most successful aspect of the book is its treatment of chain recurrence and

related notions such as attractors and basic sets. (The treatment of chain re-

currence extends over several chapters and contains much more than I have

summarized above.) This is where the author's "relationspeak" really pays off.

The results on topological hyperbolicity do capture the topological properties of
hyperbolic systems, but of course not the quantitative properties, as indicated,

for example, by Lyapunov exponents. Moreover, without the assumption of

smoothness and the resulting property of transversality, only very weak pertur-

bation results can be obtained (as the author points out).

The somewhat uncompromising use of relations, even when what is mainly

of interest is maps, allows a great deal of information to be packed in. This

comes at a price. This is not a book one reads casually or just picks up to

find a result. The difficulties are exacerbated by a tendency towards extremely

long statements of theorems (some extending for more than a page). Moreover,

sometimes definitions, as well as frequently used notation, are introduced as

part of the statements of theorems.

References and attributions for specific results are almost nonexistent. (There

is a page of "Historical Remarks" at the end of the book, but these are not very

specific.) It seems likely that many of the theorems as presented are due to

the author. One such is the Shub-Nitecki lemma, to which Akin contributed

the most difficult part. Another occurs in a chapter on "Invariant Measures

for Mappings": Let / be a topologically transitive map of X , and let \nP(f)

denote the set of / invariant Borel probability measures on X. For x G X

let M(x) denote the collection of measures which arise from x as weak limits

of ergodic averages. Let Con(f) be the set of x such that M(x) consists of

a single measure (so the ergodic averages converge). Con(f) is of full mea-

sure (with respect to every / invariant measure), and there is a nonempty

closed connected set /* of lnP(f) such that M~l(I*) = [x\M(x) = I*] is

residual. When /* contains more than one measure (for example, when /

is minimal and not uniquely ergodic), then Con(f) n M~](I*) = 0. So in

this case Con(f) is of first category and M~l(I*) has invariant measure zero.
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While the phenomenon of residual sets and sets of full measure being disjoint is

well known, this dynamical formulation is quite natural and appears to be new.

(However, this is an example of what was alluded to above—it is necessary to

search through earlier theorems just to understand the notation.)

It is a standard practice for a reviewer to regret the absence of certain topics,

and this will be no exception. The most striking omission is topological entropy

(surely something that "every dynamicist should know"), which would have fit

in well with the discussion of decompositions. A discussion of the specification

property and the construction of Markov partitions would also have been of

interest. There is a brief introduction to symbolic dynamics, but it is not related

to the other topics in the book. (On the other hand, symbolic dynamics is a

world in itself, and a more extended treatment would have lengthened the book

significantly.)
This monograph is Volume 1 in a new AMS series, Graduate Studies in

Mathematics. It is natural to ask whether it is appropriate for such a series.

Well, in one sense it certainly is. The prerequisites are modest (mostly general

topology of metric spaces), and the proofs are clear and well motivated. Another

attractive feature is the extensive collection of exercises, of varying levels of

difficulty; in some cases, they develop non-trivial extensions of the theory. On

the other hand, a student learning dynamics may wish at first to concentrate on

works which are more explicitly in smooth dynamics. These include the book

of Mané [M] and the forthcoming books of Katok and Hasselblatt [KH] and

Clark Robinson [R]. Another useful reference, especially for topics related to

hyperbolicity, is the book of Shub [S]. Be that as it may, Akin's interesting and

well-written book is a valuable addition to the literature and should be in the

library of every dynamicist.
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