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The mathematician’s job includes solving equations Ax = y with concrete linear
bounded operators A on concrete infinite-dimensional Banach spaces X . Such
equations can be solved explicitly in rare cases only, which motivates the search for
appropriate approximation methods. In this connection, several projection methods
have been enjoying great popularity for many decades.

Solving the equation Ax = y by a projection method means the following.
Choose two sequences (Pn)∞n=1 and (Rn)∞n=1 of projections on X whose ranges (im-
age spaces) ImPn and ImRn are finite-dimensional, dim ImPn = dim ImRn = n,
say, and which converge strongly (i.e. pointwise) to the identity operator on X .
Then replace the equation Ax = y by the approximate equation

PnAx
(n) = Pny (x(n) ∈ ImRn).(1)

One says that the projection method converges for the operator A and writes A ∈
Π{Pn, Rn} in this case if there is an n0 with the following property: the equations
(1) have a unique solution x(n) ∈ ImRn for every n ≥ n0 and every y ∈ X , and
x(n) converges in X to a solution x of the equation Ax = y.

For example, assume X is lp, the Banach space of all sequences summable in the
p th power, and A is given by an infinite matrix on lp. If we denote by Pn = Rn
the projections on lp given by

(x1, x2, x3, . . . ) 7→ (x1, x2, . . . , xn, 0, 0, . . . ),(2)

then the equation (1) is equivalent to the linear algebraic system whose matrix is
the principal n × n section of A and whose right-hand side is constituted by the
first n terms of the sequence y.

As another example, suppose X = L2(Γ) with some curve Γ in the plane and
A is a linear and bounded integral operator on L2(Γ). Choose n “trial functions”
ϕ1, . . . , ϕn and n “test functions” ψ1, . . . , ψn in L2(Γ), and denote by Rn and Pn
the orthogonal projection of L2(Γ) onto the linear hull of ϕ1, . . . , ϕn and ψ1, . . . , ψn,

respectively. Then (1) requires finding a linear combination x(n) = x
(n)
1 ϕ1 + . . . +

x
(n)
n ϕn of the trial functions such that the test equations (Ax(n), ψj) = (y, ψj) are

satisfied for j = 1, . . . , n. Projection methods of this type are often referred to as
Galerkin methods.

Whether a given projection method converges for a given operator is in general a
delicate problem. Standard texts on functional and numerical analysis usually cover
self-adjoint operators and compact perturbations of the identity operator. However,
operators of convolution type are in general neither self-adjoint nor of the form
identity plus compact. This implies that approximation methods for convolution
equations require new ideas and techniques and are therefore especially attractive.
In the meanwhile the corresponding theory has grown up to an impressive edifice,
a new significant top of which is the book by Hagen, Roch, and Silbermann.
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1. The art of proving the convergence of approximation methods

For the sake of simplicity, let us consider projection methods with Pn = Rn.
Denote by An the compression of A to ImPn, i.e. put An = PnA| ImPn. The
projection method thus gives us a sequence (An)∞n=1 of approximating operators.
This sequence is said to be stable if the operatorsAn are invertible for all sufficiently
large n, for n ≥ n0, say, and the norms of the inverses are uniformly bounded:
supn≥n0

‖A−1
n ‖ < ∞. In standard courses on numerical analysis we learn that

A ∈ Π{Pn, Pn} if and only if A is invertible and the sequence (An) is stable. Thus,
everything is reduced to studying the stability of (An).

There are two cases in which the convergence of projection methods can be es-
tablished almost straightforwardly. First, if X is a separable Hilbert space, A is a
positive-definitive operator on X , and (Pn) is a sequence of orthogonal projections,
then (Ax, x) ≥ ε‖x‖2, and consequently, (PnAPnx, Pnx) = (APnx, Pnx) ≥ ε‖Pnx‖2
for all x ∈ X . It follows that An is invertible for all n and that ‖A−1

n ‖ ≤ 1/ε, which
shows that A ∈ Π{Pn, Pn}. Secondly, in case A = I + K with some compact
operator K, the strong convergences Pn → I and P ∗n → I imply the uniform
convergence PnKPn → K. Hence, if A = I + K is invertible, then so also is
An = I + PnKPn (on ImPn) for all sufficiently large n; and, moreover, since
‖(I + PnKPn)−1‖ → ‖(I +K)−1‖, it follows that the norms ‖A−1

n ‖ are uniformly
bounded. Consequently, A ∈ Π{Pn, Pn} whenever A is invertible. By suitably mod-
ifying and combining the previous two arguments, one can prove the convergence
of projection methods for a series of interesting operators.

But now suppose A is given on lp (1 < p <∞) by an infinite Toeplitz matrix:
a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .

 .(3)

The function a defined on the complex unit circle T by a(eiθ) =
∑∞
n=−∞ ane

inθ

is referred to as the symbol of the operator induced by the matrix (3), and this
operator is usually denoted by T (a). Define Pn by (2) and abbreviate PnT (a)| ImPn
to Tn(a). The corresponding projection method is called the finite section method:
it consists in replacing the infinite system with the matrix (3) by approximating
systems whose matrices are a0 . . . a−(n−1)

. . . . . . . . .
an−1 . . . a0

 .

Toeplitz operators are in general far away from being positive-definite or compactly
perturbed identities. The study of the finite section method for Toeplitz operators
was initiated in the early sixties by Baxter and Reich. Almost at the same time,
Gohberg and Feldman embarked on this topic, and within only a few years they
established a comprehensive theory for operators on lp with continuous symbols
and operators on l2 with piecewise continuous symbols [2]. The basic idea of the
Gohberg/Feldman approach is a clever combination and generalization of the argu-
ments pointed out above: if A = B +K +D where B ∈ Π{Pn, Pn}, K is compact,
and D is of small norm, then A ∈ Π{Pn, Pn} if only A is invertible. Suppose, for ex-
ample, the symbol a of T (a) is sufficiently smooth and T (a) is invertible. Then a ad-
mits a so-called Wiener-Hopf factorization a = a−a+, which yields a representation
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T (a) = T (a−)T (a+). A simple trick shows that B := T (a+)T (a−) ∈ Π{Pn, Pn}.
One can prove that T (a)−B is compact. Consequently, T (a) ∈ Π{Pn, Pn}.

This “perturbation idea” was worked out and extended to other classes of convo-
lution operators by several people in the seventies. An account of this development
is given in Prössdorf and Silbermann’s book [4].

Nevertheless, some basic problems, mainly those pertaining to operators with
discontinuous symbols or coefficients, remained open at that time. For instance,
Verbitsky and Krupnik showed that if a is a piecewise continuous function with
only a single jump, then the finite section method converges for T (a) on lp if and
only if T (a) itself and a certain associated (Toeplitz) operator T (ã) are invertible.
Thus, in more complicated situations the invertibility of T (a) alone does not imply
the convergence of the finite section method. However, all efforts to extend the
Verbitsky/Krupnik result to piecewise continuous symbols with an arbitrary num-
ber of jumps failed. This problem was disposed of only after understanding how to
apply Banach algebra techniques to projection methods.

2. What is spectral theory of approximation methods ?

Gelfand theory may be advantageously used to study invertibility in commuta-
tive Banach algebras. If a noncommutative Banach algebra has a nontrivial center,
one may employ so-called local principles in order to reduce the question of whether
an element is invertible to the same question for a family of (simpler) “local repre-
sentatives”.

In the sixties, Simonenko realized that algebras of convolution operators have a
nontrivial center modulo compact operators. Since an operator is Fredholm if and
only if it is invertible modulo compact operators, one can therefore invoke local
principles to establish Fredholm criteria for convolution operators.

In the early seventies, Kozak developed an analogous approach to projection
methods and thus gave birth to what is nowadays called spectral theory of approx-
imation methods. The basic idea of this theory is to construct a Banach algebra
B with a nontrivial center such that the stability of the approximating sequence
(An)∞n=1 is equivalent to the invertibility of a certain element in B. Suppose the
operators An are n× n matrices, An ∈ L(Cn). Put

B0 = L(C)⊕L(C2)⊕L(C3)⊕ . . .(4)

and notice that

C =
{

(Cn)∞n=1 ∈ B0 : ‖Cn‖ → 0 as n→∞
}

(5)

is an ideal of B0. A moment’s thought reveals that (An) is stable if and only if
(An)+C is invertible in B := B0/C. On the basis of this simple construction and ap-
propriate localization techniques, Kozak was able to prove remarkable convergence
criteria for projection methods for multidimensional convolutions with continuous
symbols.

Nevertheless, this approach failed for operators with discontinuous symbols, and
so the development paused for almost a decade. The breakthrough came at the
beginning of the eighties with Silbermann. He first considered the finite section
method for Toeplitz operators. The product Tn(a)Tn(b) of two finite Toeplitz ma-
trices is in general not a Toeplitz matrix. Instead, one has the formula (which was
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first explicitly written down by Widom)

Tn(a)Tn(b) = Tn(ab)− PnH(a)H(b̃)Pn −QnH(ã)H(b)Qn

where Qn acts by the rule

Qn : (x1, x2, x3, . . . ) 7→ (xn, xn−1, . . . , x1, 0, 0, . . . )

and H(c), H(c̃) stand for the Hankel matrices (operators)

H(c) =


c1 c2 c3 . . .
c2 c3 . . . . . .
c3 . . . . . . . . .
. . . . . . . . . . . .

 , H(c̃) =


c−1 c−2 c−3 . . .
c−2 c−3 . . . . . .
c−3 . . . . . . . . .
. . . . . . . . . . . .

 .

Since Hankel operators with continuous symbols are compact, Silbermann replaced
the ideal (5) by the set

J =
{

(PnKPn +QnLQn + Cn)∞n=1 ∈ B0 : K and L compact, ‖Cn‖ → 0
}
.

This is not an ideal in all of B0, but B0 contains a sufficiently large subalgebra S
such that J is an ideal in S. In particular, the sequences (Tn(a))∞n=1 belong to

S. Finally, Silbermann associated two operators W1 := W1

(
(An)∞n=1

)
and W2 :=

W2

(
(An)∞n=1

)
with each sequence (An) ∈ S and proved the following theorem: if

(An) ∈ S, then (An) is stable if and only if the two operators W1 and W2 and the
element (An) +J ∈ S/J are invertible. The point is that invertibility in S/J can
now again be studied with the help of local principles and that the structure of
S/J is much nicer than the structure of Kozak’s algebra B0/C. If An = Tn(a) with
some piecewise continuous function a, then W1 is T (a) itself, W2 is the associated
Toeplitz operator T (ã), and (An) + J turns out to be automatically invertible if
T (a) is. Thus, Silbermann’s approach implied that if a is an arbitrary piecewise
continuous symbol, then T (a) ∈ Π{Pn, Pn} if and only if both T (a) and T (ã) are
invertible, and so solved a problem that had been open for many years at that time.

Spectral theory of approximation methods is the modification, extension, and
generalization of the idea sketched in the preceding paragraph for the finite section
method for Toeplitz operators to other approximation methods for other operators.
Roughly speaking, one has to find the analogues of the ideal J , of the algebra S,
and of the operators W1,W2 for the method under consideration.

The appearance of only two operators W1,W2 and of only one quotient algebra
S/J is a peculiarity of the finite section method for Toeplitz operators. In general,
one is led to families {Wt}t∈Ω of operators and {Sτ/Jτ}τ∈Σ of algebras. Conse-
quently, the results typically read as follows: the sequence (An) of approximating
operators is stable if and only if certain operators Wt (t ∈ Ω) are invertible and
certain additional conditions Cτ (τ ∈ Σ) are satisfied.

The books [1] and [5] summarize part of the development of spectral theory of
projection methods up to the end of the eighties.

3. The operators considered in the book

Hagen, Roch, and Silbermann study operators belonging to the closed algebra
of singular integral operators with piecewise continuous coefficients over arbitrary
composed Lyapunov curves. It should be emphasized that the integration curves
may have corners, self-intersections, or endpoints. The underlying spaces, in which
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also convergence of the approximate solutions is measured, are Lebesgue spaces
with so-called power weights.

In this generality, even the Fredholm theory of the operators under consideration
is highly nontrivial. This theory, which was worked out by Dynin, Gohberg, Krup-
nik, Duduchava, Plamenevski, Senitchkin, Costabel, Roch, Silbermann, and others,
is presented in a very clear manner, with a lot of improvements and important sup-
plements to known results. The exposition is based on Roch and Silbermann’s
earlier text [3]: after “localization” (a la Allan/Douglas) and “straightening”, one
arrives at a system of Mellin convolutions on the semi-axis.

Many other operators more or less directly related to singular integral operators
are also studied. These include Toeplitz and Wiener-Hopf operators, Toeplitz plus
Hankel operators, Fourier and Mellin convolutions, operators with Carleman shifts
or complex conjugation.

4. Concrete approximation methods studied in the book

Dictated by the need of considering operators on fairly general curves, the au-
thors focus attention on spline approximation methods. Thus, an approximate
solution x(n) of Ax = y is sought in a certain spline space. The notion of splines
is used by the authors in a wide sense: splines are functions satisfying certain
axioms, and specification of these axioms yields the classical smoothest piecewise
polynomial splines, or piecewise polynomial splines with defect, or wavelets. A
precise definition of splines would go beyond the scope of this review; for what fol-
lows, readers not familiar with splines may simply think of a spline as a piecewise
constant function.

Once the form in which x(n) is sought has been specified, there are several possi-
bilities of determining x(n) (e.g. of evaluating the n coefficients in the representation
of x(n) as a linear combination of piecewise constant functions). The authors discuss
the following methods.

Galerkin methods. Find x(n) so that (Ax(n), ψj) = (y, ψj) for given test functions
(splines) ψ1, . . . , ψn.

Collocation methods. Determine x(n) by the requirement that (Ax(n))(τj) =
y(τj) at given points τ1, . . . , τn.

Qualocation methods. Compute the integral hidden in the scalar product (. , .)
of the Galerkin method by a quadrature formula (. , .)Q, and hence, look for an

x(n) such that (Ax(n), ψj)Q = (y, ψj)Q for given test functions ψ1, . . . , ψn.

Quadrature methods. Evaluate the singular (and, possibly, other) integrals con-
tained in the operator A by appropriate quadrature formulas, and thus, replace the
operator A by another (“discretized”) operator AD. Then apply a Galerkin or a
collocation method to the equation ADx = y.

Quadrocation methods. Do the same as in the case of a quadrature method,
but solve the equation ADx = y by a qualocation method, i.e. determine x(n) by
(ADx

(n), ψj)Q = (y, ψj)Q.

Notice that quadrocation methods as well as collocation quadrature methods are
“fully discretized” methods.
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For each of the methods listed, the authors establish convergence criteria of the
kind mentioned at the end of Section 2 of this review.

5. The book itself

With this book, Hagen, Roch, and Silbermann finished a big stage in the de-
velopment of spline approximation methods, ranging from Costabel and Stephan’s
pioneering papers in the middle of the eighties, through the important work by
Prössdorf, Elschner, Rathsfeld, Schmidt, Chandler, Graham, Arnold, Wendland,
Saranen, Sloan, and others, up to the recent investigations by Dahmen, Prössdorf,
and Schneider devoted to wavelet approximations. Of course, the three authors
themselves have been actively participating in this development, and many ideas
and results of the book as well as the basic techniques employed are due to them.
The theory they can present now is really round: on the basis of a unified approach
they obtain results of a final nature.

Whether the book is easy to read depends on what the reader expects from
the book. For novices who want to learn Banach algebra theory of approximation
methods, the book is a useful guide on the long way they have to go. People who
have been working in the field or in related areas, and thus have already gained
some feeling for what is essential or not, will appreciate the book as an excellent
source. However, those who have an equation and are consulting the book for
advice on how to solve it approximately will run into trouble, because concrete
recommendations are entirely missing, and both locating and decoding the relevant
convergence result is sometimes no simple task.

I should also mention that only 6 of the 373 pages of the text are dedicated to
numerical experiments. But this is okay, because the authors’ aim is the rigorous
foundation of several approximation methods. Numerically testing and comparing
the different methods, developing fast algorithms, and implementing them on the
computer is a great challenge for future work and the subject of another book.

Overall, as for the convergence and stability analysis of spline approximation
methods for convolution and singular integral equations, I know of no even nearly
comparable exposition of the field. The authors’ approach is of fundamental impor-
tance; basic results of the book are new and of impressive depth. I believe the book
will strongly influence further research into the topic and will be an indispensible
source for a long time to come.
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